The under-chassis equipment which suspended by rubber components constitutes a complex coupled vibration system with the car body of high-speed trains. This coupled system has a great impact on the entire vehicle vibration behavior. The existing studies mainly concerned about the vertical vibration attenuation analysis of the under-chassis equipment by using the linearization model of the rubber component, however, the nonlinearity of the rubber component and the multi-dimensional dynamic coupling relationships between the under-chassis equipment and the car body under complex operating conditions were barely considered. This leaded to large analytical errors, so that the vibration reduction effect may greatly deviated from the expected design. Therefore, in the proposed project, a nonlinear dynamic model of the rubber component considering the correlation with temperature, vibration frequency, vibration amplitude and vibration fatigue will be considered, accordingly, a vehicle dynamic model of the high-speed train including the nonlinear characteristics of the suspended rubber component of the under-chassis equipment is going to be established. Based on the on-line parameter identification method etc., various complicated conditions of trains will be reproduced in the simulations. A continuous mode tracking method based on cubic spline interpolation will be proposed to study the multi-order modal coupling development between the car body and the under-chassis equipment under dynamic parameters. Through the modal contribution analysis, the key vibration mode energy transfer will be studied to reveal the multi-dimensional dynamic coupling vibration mechanism between the car body and the under-chassis equipment. Based on the multi-mode control and the strict decoupling theory, a method of synergistic vibration reduction of the car body and the under-chassis equipment will be proposed. The proposed project is of great significance for the research of the under-chassis equipment vibration of high-speed trains and the vibration reduction method of the entire vehicle, it will also provide a scientific reference for the research of railway vehicle system dynamics based on rubber nonlinearity.
采用橡胶元件吊挂的高速列车车下设备与车体构成复杂的耦合振动系统,对整车振动影响巨大。现有研究主要运用橡胶元件线性模型对车下设备进行垂向减振分析,对橡胶元件非线性、复杂工况下车体与车下设备多维动态耦合关系考虑不足,这带来较大分析误差,可能令减振效果极大偏离设计预期。为此,本项目综合考虑橡胶元件的温度、振动频率、振幅及振动疲劳相关性,构建包含车下设备吊挂橡胶元件非线性的车辆系统动力学模型,采用在线参数辨识等方法,实现车辆多工况仿真复现;提出基于三次样条插值的模态连续追踪方法,研究动态参数下车体与车下设备多阶模态耦合发展规律,通过模态贡献量分析,研究关键参振模态能量转移,揭示车体与车下设备多维动态耦合振动机理;综合多模态控制与严格解耦理论,提出车体与车下设备协同减振方法。项目研究对于丰富和完善高速列车车下设备减振研究及整车系统减振方法具有重要意义,可为考虑橡胶非线性的车辆动力学研究提供科学参考。
采用橡胶元件吊挂的高速列车车下设备与车体构成复杂的耦合振动系统,对整车振动影响巨大。本项目综合包含温度谱的粘弹力模型与摩擦力模型,建立了考虑温度、振动频率及振幅相关性的车下设备橡胶减振元件非线性本构模型,通过静态试验及DMA试验对模型参数进行了辨识,并开展了动态试验对本构模型进行了验证;基于橡胶减振元件非线性模型,建立了包含车下设备的高速列车整车动力学模型,研究了温变条件下车下设备与车体多维耦合振动机理,并分析了车体模态参数的演变规律;提出了基于Lagrange的三次样条插值模态连续追踪方法,研究了动态参数下车辆系统模态频率转向问题,探究了模态阻尼比跳变现象成因;分析了车体与车下设备多阶模态耦合的发展规律,阐释了车体垂向弯曲模态频率转向机理及其影响;研究了车体与车下设备多维振动传递特性,基于模态贡献量分析确定了耦合系统的关键参振模态;提出了车体弹性模态等价质量识别方法,进行了车体多模态控制,协同优化了车下设备吊挂频率及阻尼参数;提出了车下设备能量解耦度分析方法,研究了车下设备偏心对设备振型频率和振动能量的影响;提出了基于正向解耦法与逆向解耦法的车下设备严格解耦减振设计方法,并分析了减振设计效果;基于碟形弹簧负刚度特性,提出并设计了新型车下设备高静低动(HSLDS)隔振元件,分析了隔振元件力传递特性,验证了其对车下设备振动控制效果;提出了基于车下设备自由振动加速度响应的物理参数识别方法,识别了设备转动惯量和二维偏心距参数;提出了基于车下设备强迫振动加速响应的激励参数识别方法,识别了激励力幅值曲线和激励力二维偏心距参数。本项目的研究对轨道车辆车体与车下设备振动行为预测和协同减振设计具有重大的意义,将促进对轨道车辆车体与车下设备多维耦合振动机理及力相互作用关系的深入理解,推动轨道车辆车下设备减振设计理论的发展和完善,为轨道车辆整车动力学正向设计提供重要依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
高速列车车体结构共振效应下的耦合振动特性及载荷谱研究
高速列车车体下部悬吊部件振动行为及可靠性研究
面向高速列车减振降噪的车体结构振动与声学特性研究
高速列车-气流耦合振动研究