Tissue repair following ventilator induced lung injury (VILI) is closely related to the patient prognosis. It plays an important role that macrophage maintain pro-inflammatory response in tissue repair and fibrogenesis, predominantly producing energy by anaerobic glycolysis, is a novel mechanism to induce macrophages pro-inflammation . However, it is still poorly known what the role of Warburg-effect-dependent inflammation plays in tissue repair following VILI. Scavenger receptor (SR) family have been proved to play a dual pivotal roles as metabolic regulator and inflammatory activator in macrophages. Previously, we found the VILI mouse model exhibited an increased expression of SR family class B type 1 (SR-B1). SR-B1hi macrophage differentiated as a new subset . Our preliminary result also showed this subset was characterized by enhanced Warburg effect and persistent pro-inflammation response. SR-B1 knockout promoted lung tissue repair and suppressed fibrosis after VILI. Consequently, we hypothesize : infiltrated macrophages will develop into SR-B1hi new subset induced by death cell phagocytosis following VILI;the novel subset reacts by forming a multi- protein complex known as NLRP3 inflammasome via Warburg effect , resulting in persistent inflammation activation; the metabolic and pro-inflammatory changes leads to lung tissue repair suppression and pulmonary fibrosis; lung protective ventilation may improve repair via suppressing above signaling pathway. In this study, we plan to prove our hypothesis in vivo through using the wild type, SR-B1 knockout and bone marrow transplantation mice bone marrow transplantation mice with VILI and protective ventilation model. Moreover, macrophages with alveolar epithelial cells or fibroblasts will be co-cultured in vitro. Flow cytometry analysis and HPLC-MS will be applied to reveal SR-B1-mediated cross-talk between metabolism and inflammation in the repair phage. Within this study, we anticipate to investigate the underlying mechanism of SR-B1hi macrophage new subset in tissue repair and fibrosis following VILI, and explore a novel therapeutic target to improve outcome.
呼吸机诱导肺损伤(VILI)后组织修复与患者预后密切相关。巨噬细胞持续炎症激活直接影响修复。以无氧糖酵解为主的Warburg效应能持续激活巨噬细胞炎症,但是否调控VILI后组织修复尚不清楚。清道夫受体(SR)对代谢和炎症均有调控作用,我们前期在VILI模型上发现巨噬细胞SR家族成员B1表达上调,分化为SR-B1hi新亚群,Warburg效应增强;SR-B1敲除小鼠纤维化改善。据此提出假说:VILI后巨噬细胞分化形成SR-B1hi新亚群,代谢上表现为Warburg效应,激活 NLRP3炎症小体维持炎症状态,导致修复障碍和纤维化,肺保护性通气通过上述机制改善修复。我们拟复制野生型和SR-B1敲除小鼠 VILI 模型,与肺保护性通气模型对比,分选原代巨噬细胞,利用液相色谱-串联质谱、细胞共培养等方法研究巨噬细胞亚群和功能变化,以期揭示该通路在VILI后组织修复中的机制,为改善预后提供分子靶点。
呼吸机诱导肺损伤(VILI))后组织修复与机械通气患者预后密切相关。巨噬细胞持续炎症激活直接影响肺组织修复。我们前期研究在VILI模型上发现以无氧糖酵解为主的Warburg效应能持续激活巨噬细胞炎症,参与死亡细胞吞噬的巨噬细胞膜蛋白清道夫受体(SR)家族成员B1表达上调,分化为SR-B1hi新亚群,胞内Warburg效应增强,促炎因子IL-1β、IL-18释放增加;SR-B1敲除小鼠肺组织修复优于野生型小鼠。但VILI发生后,巨噬细胞SR-B1分子及其介导的下游通路如何同时影响胞内代谢与炎症状态,并参与组织损伤与修复尚不清楚。 据此,本项目围绕代谢方式转变介导的巨噬细胞炎症激活参与VILI后组织修复这一科学问题,开展后续研究。建立野生型和SR-B1敲除小鼠VILI模型,与肺保护性通气模型对比,利用液相色谱-串联质谱、细胞共培养等方法,以巨噬细胞亚群和功能变化为核心,在分子、细胞及动物整体水平阐明SR-B1作为枢纽分子实现代谢与炎症网络crosstalk,探讨该分子影响葡萄糖代谢方式并调控巨噬细胞炎症表型的机制,揭示了SR-B1hi巨噬细胞新亚群参与VILI后组织修复的机制。我们验证了科学假说:呼吸机诱导肺损伤后,巨噬细胞在参与死亡细胞清除过程中分化形成SR-B1hi新亚群,SR-B1分子是联系代谢与炎症的枢纽分子,激活下游PI3K-mTOR-Akt1 -HIF-1α通路,使该亚群在代谢上表现出以无氧糖酵解为主要获能方式的Warburg效应,通过 NLRP3炎症小体维持炎症激活状态,导致VILI后组织修复障碍和纤维化发生;肺保护性通气能通过上述机制改善修复,减少纤维化的发生。本研究结果为改善 VILI 后组织修复提供了潜在靶点,为优化机械通气治疗策略提供理论和实验依据。在课题资助下同时开展了VILI后肺损伤和修复的转录组学和代谢组学研究,筛选出一系列与炎症细胞分化、免疫调控、代谢重编程相关的核心信号通路,初步开展了以下呼吸道病毒感染所致ARDS患者接受机械通气过程中糖、脂质代谢谱的研究。上述研究丰富了我们对于VILI后肺损伤的病理生理认知,也为后续在机械通气患者中进行生物标志物验证、气压伤预警模型建立和干预靶点研发,提供了转化医学思路和证据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
特斯拉涡轮机运行性能研究综述
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
低轨卫星通信信道分配策略
基于非经典Wnt5a/Fz8通路调控的巨噬细胞极化在呼吸机诱导肺损伤后组织修复中的作用与机制研究
lncRNA-EPS通过转录调控巨噬细胞炎症反应参与呼吸机诱导肺损伤的机制研究
巨噬细胞亚群在肝脏损伤修复中的功能研究
Midkine-AngII信号通路调控呼吸机相关肺损伤及修复作用的机制研究