可压流体方程及其耦合模型的定性性态

基本信息
批准号:11871047
项目类别:面上项目
资助金额:53.00
负责人:李海梁
学科分类:
依托单位:首都师范大学
批准年份:2018
结题年份:2022
起止时间:2019-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:孙家伟,井磊,温新梅,赵爽,汤厚志,寿凌云,何清友,陈阳,仝青蕊
关键词:
FokkerPlanck方程可压缩Euler方程流体力学方程Boltzmann可压缩NavierStokes方程
结项摘要

This project is devoted to the mathematical analysis of the qualitative behaviors of the solutions to compressible fluid-dynamical equations, including the existence, regularity and uniqueness of weak solutions to multi-dimensional compressible Navier-Stokes equations, the nonlinear stability of plane Couette and Poiseuille flow for multi-dimensional compressible Navier-Stokes equations and the Rayleigh-Taylor instability problem; the nonlinear stability of wave pattern, space-time asymptotical behaviors, and multi-scaled asymptotical limits of the local or global solutions to compressible Navier-Stokes(Euler)-Fokker-Planck equations, and the well-posedness of the initial boundary value problem for the coupled Navier-Stokes-Dacry/Porous models for two-phase flow motion; the well-posedness and asymptotical behaivors of the solutions to free boundary problem for multi-dimensional compressible (relativistic) Euler equations and the related models with the transport properties; the existence and nonlinear stability of boundary layer solutions to the mixture Boltzmann type equations, the contruction of Green’s function for multi-dimensional Vlasov-Poisson(Maxwell)-Boltzmann equations and the related coupling models, and the nonlinear stability and space-time behaviors of the basic waves profiles (such as shock profile, rarefaction wave) and their wave pattern for Vlasov-Poisson-Boltzmann(Fokker-Planck) equations.

本项目拟研究可压流体方程及其耦合模型的定性性态,包括高维可压(非等熵)Navier-Stokes方程弱解的存在性、正则性、唯一性;可压Navier-Stokes方程的Couette流稳定性与Rayleigh-Taylor不稳定性等;高维可压Navier-Stokes(Euler)-Fokker-Planck方程的非线性波现象、大时间行为、多尺度渐近极限等,高维Navier-Stokes-Dacry两相流耦合方程的适定性等;高维可压(相对论)Euler方程及相关模型的含真空自由边界问题的适定性、渐近行为等;高维Vlasov-Poisson(Maxwell)-Boltzmann方程等模型的格林函数构造、基本波的稳定性与时空逐点行为,混合气体的Boltzmann方程边界层问题及稳定性等。这些研究内容不仅是国际上十分重视的、有重要理论意义的、前沿主流课题,而且与工程应用紧密相关、有广泛的应用前景。

项目摘要

本项目执行以来的研究工作基本上按原计划执行,围绕“可压流体方程及其耦合模型的定性性态”,重点研究了可压缩Navier-Stokes方程及其耦合方程的适定性、渐近行为、时空逐点估计等,可压Navier-Stokes(Euler)-Vlasov-Fokker-Planck方程平面稀疏波的非线性稳定性、多尺度渐近极限等,高维可压缩(相对论)Euler方程及相关模型含真空自由边界问题的适定性、渐近行为等,高维Vlasov-Poisson-Boltzmann及相关模型的格林函数、谱结构、时空逐点行为等,高维Patlak-Keller-Segel方程及相关模型的适定性和渐近行为等,取得了多项进展。我们在国际重要数学刊物(比如Arch.Ration.Mech.Anal.,SIAM J.Math.Anal.等)发表或接受发表学术论文28篇,其中SCI论文24篇。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
2

分数阶微分方程奇异系统边值问题正解的存在性

分数阶微分方程奇异系统边值问题正解的存在性

DOI:10.13718/j.cnki.xdzk.2019.04.015
发表时间:2019
3

应用改进的 Kudryashov方法求解演化方程

应用改进的 Kudryashov方法求解演化方程

DOI:
发表时间:2018
4

基于化学反应动力学方程的一维膨胀时程模型

基于化学反应动力学方程的一维膨胀时程模型

DOI:10.11779/CJGE202004017
发表时间:2020
5

分数阶常微分方程的改进精细积分法

分数阶常微分方程的改进精细积分法

DOI:10.21656/1000--0887.390355
发表时间:2019

李海梁的其他基金

批准号:10871134
批准年份:2008
资助金额:30.00
项目类别:面上项目
批准号:11171228
批准年份:2011
资助金额:40.00
项目类别:面上项目
批准号:12026408
批准年份:2020
资助金额:20.00
项目类别:数学天元基金项目
批准号:10926003
批准年份:2009
资助金额:4.00
项目类别:数学天元基金项目

相似国自然基金

1

有关不可压流体方程的定性研究

批准号:10101014
批准年份:2001
负责人:酒全森
学科分类:A0306
资助金额:8.00
项目类别:青年科学基金项目
2

可压缩微极流体方程组解的性态研究

批准号:11901115
批准年份:2019
负责人:彭红云
学科分类:A0306
资助金额:21.00
项目类别:青年科学基金项目
3

不可压缩轴对称流体方程的定性研究

批准号:11801018
批准年份:2018
负责人:刘继涛
学科分类:A0306
资助金额:25.00
项目类别:青年科学基金项目
4

大扰动下不可压缩Navier-Stokes方程的稳定性态

批准号:11526032
批准年份:2015
负责人:贾艳
学科分类:A0306
资助金额:3.00
项目类别:数学天元基金项目