Industrial production and application of polyoxymethylene dimethyl ethers play a central role on the use of the existing diesel engines, development of petrochemical industry technology, activation and extension of C1 chemical industry chain, digestion of overcapacity of methanol industry, and efficient control of smog and haze. Developing DMMn industrial technology requires investigating the suitable ranges of the values of n and of the mole fractions of the homologues, the compatibilities of DMMn and diesel and of DMMn and typical additives, and the principle for the blend of the additives and diesel. Therefore, the present program will synthetise the DMMn samples with different values of n and different mole fractions of the homologues. Then, we will systematically measure the compatibility data for the system (Chinese diesel+DMMn+other typical additives). A series of theoretical models for prediction of these data will be established. The structure activity relationships and the mechanisms that govern such relationships will be uncovered. The mechanisms that give rise to the coordination effects as different additives are blended will be elucidated. And the answer will be offered for the question regarding why the compatibility between additive and diesel is decreased when a new additive is added. The experimental data will be provided for the ranges of the values of n, of the mole fractions of homologues, and of dose, with which the DMMn samples will show good compatibility with Chinese diesel products and with the additives that are presently used in industry. The predictive models will be developed for optimal selection of DMMn, of other typical additives, and of their blend ratios on the basis of the properties of diesel products. The above-mentioned results will offer a series of valuable experimental data, principles, and prediction models, which can be used to develop the catalysts and to optimize experimental conditions for synthesis of DMMn and to establishe new technology of the blend of DMMn and other additives (including the blend of other additives)
聚甲氧基二甲醚DMMn的生产和应用对我国沿用现有柴油发动机、发展石化行业技术、盘活和延伸C1化工产业链、吸收甲醇工业过剩产能和高效治理雾霾均具核心推动作用。发展DMMn工业技术需研究适宜n值范围和各同系物含量、与柴油及主要添加剂的配伍性和相容性及复配原理。为此,本项目制备不同n值和同系物含量的样品;系统测定(我国柴油+DMMn+其它主要添加剂)配伍性和相容性的系列实验数据,建立理论预测模型,揭示构效关系及微观机理、复配产生协同效应的微观机理、不同添加剂相容性差的原因;获取与我国典型柴油产品和工业现用添加剂具备良好配伍性和相容性的DMMn的(n值、同系物含量、复配剂量)范围的实验数据,建立为柴油产品优选DMMn、其它主要添加剂、及复配比的理论预测模型。上述成果为研制DMMn催化剂及生产工艺、DMMn与主要添加剂(或主要添加剂间)复配工艺等提供了系列珍稀实验信息、原理支撑和理论预测模型。
DMMn的生产和应用对沿用柴油发动机、延伸C1化工产业链、吸收甲醇过剩产能和治理雾霾具有重要意义。本项目制备了系列离子液体,表征并测定了物性数据;制备了DMMi(i = 2-8)含量不同的DMMn样品,获取了系列物性数据;获取了三聚甲醛和甲缩醛转化率、DMMi各组分浓度随催化剂结构及浓度、甲缩醛/三聚甲醛比、反应时间和温度变化的数据;建立了三聚甲醛分解动力学方程及甲缩醛和三聚甲醛的反应动力学模型,确定了速率常数和平衡常数;揭示了催化剂的构效关系及微观机理,研制出了可显著提高DMM3和DMM4选择性(柴油添加剂的最佳DMMn组分)的新型催化剂;获取了DMMn各同系物、系列DMMn产品、柴油产品和现有柴油添加剂、(柴油+DMMn)、(柴油+DMMn+添加剂2)、(模型化合物+DMMn)、(模型化合物+柴油添加剂)等的物性数据、收评了文献数据;建立了可根据DMMi含量及物性数据准确预测DMMn产品物性数据或根据组分含量及物性数据准确预测混合物物性数据的系列方程,形成了可根据调和油品物性数值要求为柴油优选DMMn的n值范围及同系物含量、其它主要添加剂、及复配比的系列理论预测模型,模型可预测的物性包括十六烷值、密度、粘度、闪点、折光率、比热等,适用体系包括由DMMi纯组分、DMMn产品、柴油、生物柴油、有机物等形成的混合物;揭示了系列构效关系及机理、复配协同效应的微观机理等。上述成果为生产DMMn提供了新型催化剂,为研制DMMn生产工艺及计算DMMn产品物性数据、确定DMMn与主要添加剂(或主要添加剂间)复配工艺等提供了系列珍稀实验信息、原理支撑和理论预测模型。.在Fuel, Industrial & Engineering Chemistry Research等刊上发表和录用了学术论文21篇,还有5篇重要论文已投稿或即将投稿;申请了5项国家发明专利。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
论大数据环境对情报学发展的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
粗颗粒土的静止土压力系数非线性分析与计算方法
基于LASSO-SVMR模型城市生活需水量的预测
聚甲氧基二甲醚对柴油机低温燃烧机理影响的基础理论研究
聚甲氧基二甲醚类燃料的喷雾燃烧基础研究
疏水-亲水双功能催化剂用于聚甲氧基二甲醚合成
碳基催化剂上二甲醚直接氧化合成聚甲氧基二甲醚反应机理研究