In the past decade, the asymmetric catalysis has made tremendous progress. However, practical applications of homogeneous asymmetric catalysts remain limited in scope due to catalyst instability and difficulty in reuse and catalyst/product separation. Immobilization of a homogeneous catalyst can facilitate its recovery and recycle in principle, and therefore is of considerable interest to academia and industry. A large number of the research results of supported chiral catalyst system show that the choice of the supports has a decisive influence on the asymmetric catalytic performance. Utilizing the existing supports, such as organic macromolecules, inorganic porous materials, inorganic-organic hybrid materials, a lot of the excellent heterogeneous asymmetric catalytic systems have successful developed, but more reported results reflect that these supports have their limitations in the heterogenerous catalysis. In this project, the applicant hope to synthesize some novel chiral porous polymer frameworks with chrial binaphthyl compound as building blocks through a facile Friedel–Crafts alkylation method, and evaluate their performance of asymmetric catalysis in chiral model reactions. We are interested in the exploration of chiral catalysis systems based on porous organic-polymer frameworks. More importantly, this new synthetic strategy be used to construct a series of polymer networks by tailoring the active center. If chiral catalytic center could be integrated into the skeleton, one would have a chance to create a novel homochiral porous polymer in which the skeleton itself serves as the chiral heterogeneous catalysts and pores provide spaces for the transformation. Novel chiral porous polymer frameworks maintain the catalytic active centers in the whole skeleton, and possess large specific surface area, pore structure, highly thermal and chemical stability, overcome some defects of previous reported supports in chiral heterogeneous catalysts. Therefore, it is important to explore the synthesis of chiral binaphthyl-based porous polymer frameworks and have important academic significance and good prospects in practical application.
不对称催化在过去几十年中取得了巨大的进展,但催化剂分离、循环及产物纯化等困难限制其在工业中的应用。手性催化剂的负载化是解决上述困难的有效方法。大量负载手性催化体系的研究结果表明载体的选择对催化性能有着决定性影响。虽然对于现有载体如有机大分子、无机多孔材料、无机-有机杂化材料等都有比较优秀的非均相不对称催化体系开发成功,但更多报道的结果却显示出这些载体都有着自身局限性。在本项目中,申请人拟利用手性联萘基均相催化剂作为结构基元,通过一锅付克烷基化反应合成一类新型手性多孔有机聚合物骨架。利用几类模型反应来评估其不对称催化性能。通过新的策略构筑手性多孔有机聚合物骨架,是最为绿色环保、经济适用的合成方法。容易实现对手性多孔有机聚合物催化中心的剪裁,克服现有手性非均相催化剂的各种缺陷,有望成为一类优秀的手性多相催化剂。因此,探索该类手性孔状有机聚合物骨架的合成具有重要的学术意义和良好的应用前景。
不对称催化在过去几十年中取得了巨大的进展,但催化剂分离、循环及产物纯化等困难限制其在工业中的应用。手性催化剂的负载化是解决上述困难的有效方法。大量负载手性催化体系的研究结果表明载体的选择对催化性能有着决定性影响。虽然对于现有载体如有机大分子、无机多孔材料、无机-有机杂化材料等都有比较优秀的非均相不对称催化体系开发成功,但更多报道的结果却显示出这些载体都有着自身局限性。在本项目中合成了一系列手性联萘基多孔有机聚合物骨架,利用多种表征手段确定了它们的结构特征、探索了其作为非均相手性催化剂诱导不对称反应的研究。初步的研究结果表明所合成的手性多孔有机聚合物骨架能够表现出较好的手性催化性能,取得了一系列有价值的研究数据。此外,我们仍然探索了多孔有机聚合物骨架在气体吸附、离子传感、可见光催化等方面应用。通过本项目的研究为多孔有机聚合物材料的设计合成及功能开发积累了大量经验、为有机多孔材料开辟了新的研究方向
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
高压工况对天然气滤芯性能影响的实验研究
Wnt 信号通路在非小细胞肺癌中的研究进展
基于LBS的移动定向优惠券策略
铁酸锌的制备及光催化作用研究现状
Salen(M)功能化的手性多孔有机聚合物的合成及不对称催化性能研究
自负载手性孔状有机聚合物骨架的合成及不对称催化研究
手性多孔联苯型金属-有机骨架材料的不对称合成与性能研究
双功能化手性有机多孔材料的设计合成、表征及多相不对称催化研究