The structural diversity of graphene assemblies provides a rich material base for the development of tactile sensors with different properties and functions. For the macroscopic graphene tactile sensors, it is expected to develop new principles and techniques to achieve multi-mode sensing and high-resolution detection. In this project, an assembling strategy is introduced to the direct-write printing process. During the structural transition process from liquid ink to solid state, self-assembly behavior of graphene is controlled by printing temperature and drying conditions. Varying structures from laminar stacked to porous morphology are controllable printed. In addition, curve patterns with different cycles and amplitudes are printed, and each curve pattern serves as a functional sensing unit. The differences among structures and patterns of printed graphene resulted in distinct electrical response characteristics under external stresses. By systematically analysis of the responsive behaviors, high sensitivity and wide-range detection capability can be simultaneous achieved. Thereafter, tactile sensors are fabricated for human motion monitoring. Through the quantitative and localized of ink, the assembly of graphene is miniaturized and the structure is controlled by high-precision printing. The resolution is promoted for the functional sensing units, by which large-area, multi-functional sensors are explored through array integration. The combination of high-precision printing and ordered assembly of graphene will effectively enrich the structural diversity and response characteristics of graphene materials, providing new opportunities for the development of advanced tactile sensors.
石墨烯组装体的结构多样性为发展不同性质与功能的触觉传感器提供了丰富的材料基础。为解决宏观尺度的石墨烯传感器响应性单一,以及触觉传感器对高分辨检测的需求问题,本项目将组装的策略结合到直写打印过程中,通过对打印温度及成型干燥条件的控制,研究在墨水的液-固有序转变过程中石墨烯的组装行为,实现由层叠到多孔的多形式结构的可控制备。并通过打印不同周期与振幅的曲线图案作为功能单元,利用石墨烯打印结构与图案的差异性,系统分析外力作用下的电学响应特性,同步实现传感器的高灵敏度和宽范围检测能力,在此基础上制备监测人体运动的触觉传感器。通过精细打印的定量、定域控制,实现石墨烯组装结构的微型化,提升功能单元的分辨率,进而通过阵列化集成制备大面积多功能的传感器。精细打印与有序组装的结合,将有效地提高石墨烯材料的结构多元性与响应特性,为发展高性能触觉传感器提供新的思路、方法与工艺。
本项目从石墨烯墨水的可控打印与有序组装出发,开展石墨烯印刷线路结构的成型控制及性能调节,建立有序组装结构的精确调控方法,实现由单一材料单元构筑多维度的结构单元及图案化的功能单元。通过组装结构与图案的构效关系研究,获得差异性的力-电响应特性,实现灵敏度可调及检测范围拓宽。在此基础上推进传感器功能组装单元向微型化发展,并通过阵列集成实现传感器的大面积制备与功能应用,探索了在人体微动监测、大幅动作识别、压力分布检测等方面的应用。发表学术论文2篇,申请中国发明专利8项,授权4项。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
面向云工作流安全的任务调度方法
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
内质网应激在抗肿瘤治疗中的作用及研究进展
激光直写石墨烯图案及其无金属催化生长机理研究
打印墨滴的精确调控与图案化
喷墨打印图案化有机小分子发光薄膜的形态调控
基于均匀微滴直写的可调石墨烯THz微结构构筑及机制