可积系统、特殊函数与正交多项式相关问题研究

基本信息
批准号:11371251
项目类别:面上项目
资助金额:50.00
负责人:虞国富
学科分类:
依托单位:上海交通大学
批准年份:2013
结题年份:2017
起止时间:2014-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:胡星标,常向科,蒋诗晓,张英楠,陈晓敏
关键词:
正交多项式可积系统特殊函数潘勒维方程
结项摘要

The project focuses on the study of related problems among integrable systems, special functions, orthogonal polynomials and combinatorics. Discrete integrable systems are one of important topics in the field of integrable systems, in the same time, discrete integrable systems are closely tied up with other branches of mathematics. We will use bilinear method to construct new ways of integrable discretization. We will also construct the connection between integrable systems and orthogonal polynomials and study integrable systems from the aspect of orthogonal polynomials. Painleve equations are basic ones in the integrable systems, its theory is called the theory of nonlinear special functions. Heun equations are Fuchsian type differential equaitons with four singularities. There exists correspondence between Heun and Painleve equations. We will study the Painleve equations from the aspect of Heun equations and give new explanation to rational and special function solutions of Painlevé equations. Integrable systems are also closely related to combinatorics. Integrable combinatorics has become a new title. We will start from Hankel type determinant solutions of integrable systems to study related combinatorics to give new knowledge of integrable systems and look for new relation between integrable systems and combinatorics.

本项目的研究目标定位在对可积系统与特殊函数、正交多项式、组合数等相关问题的研究。离散可积系统是可积系统研究的热点之一,同时,离散可积系统与其他数学分支存在紧密联系。我们将利用双线性方法寻找孤子方程可积离散化的新途径;建立离散可积系统与正交多项式之间的联系,以正交多项式为工具研究可积系统。Painleve方程是最基本的可积系统,关于它的理论也被称为非线性特殊函数理论。Huen方程是具有四个奇点的Fuchsian型方程,它与Painleve方程之间存在对应。我们将从Heun方程的角度研究Painleve方程,给出Painleve方程有理解和特殊函数解的奇特性质的新解释;可积系统与组合数学之间存在密切联系,可积组合学成为一个新的研究方向。我们将从可积系统的Hankel型行列式解出发寻找相关的组合数,给予可积系统内在结构的新认识,深入研究可积系统与组合数学之间的联系。

项目摘要

孤立子理论也被认为是特殊函数的理论,许多孤子方程存在包括Airy函数、Hermite函数等特殊函数表示的解。正交多项式满足三项递推公式,与离散可积系统存在紧密联系。该项目在可积离散化与数值模拟,正交多项式与离散可积系统、Heun方程及其相关特殊函数、离散可积系统相关的组合数学、连续可积系统的复化及其动力学性质方面取得了进展。项目按照计划,顺利执行,完成了预期的研究目标。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

DOI:10.11999/JEIT150995
发表时间:2016
3

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
4

卫生系统韧性研究概况及其展望

卫生系统韧性研究概况及其展望

DOI:10.16506/j.1009-6639.2018.11.016
发表时间:2018
5

面向云工作流安全的任务调度方法

面向云工作流安全的任务调度方法

DOI:10.7544/issn1000-1239.2018.20170425
发表时间:2018

虞国富的其他基金

批准号:10901105
批准年份:2009
资助金额:16.00
项目类别:青年科学基金项目
批准号:10826089
批准年份:2008
资助金额:3.00
项目类别:数学天元基金项目
批准号:11871336
批准年份:2018
资助金额:55.00
项目类别:面上项目

相似国自然基金

1

可积系统与特殊函数的研究

批准号:10901105
批准年份:2009
负责人:虞国富
学科分类:A0308
资助金额:16.00
项目类别:青年科学基金项目
2

一类可积系统的 tau 函数及相关问题

批准号:11401599
批准年份:2014
负责人:吴朝中
学科分类:A0308
资助金额:22.00
项目类别:青年科学基金项目
3

离散可积系统与椭圆函数

批准号:11371241
批准年份:2013
负责人:张大军
学科分类:A0308
资助金额:55.00
项目类别:面上项目
4

可积系统的分类及相关问题

批准号:11071135
批准年份:2010
负责人:张友金
学科分类:A0308
资助金额:25.00
项目类别:面上项目