The purpose of the project is to solve the low assembly precision and low percent of pass in the multi-stage rotor assembly of aeroengine. At the same time, the proposed method in the project could meet the demand of high speed vibration response characteristics for future aeroengine. The project provides a model to explore the spatial error propagation characteristic and a synchronous measurement and adjustment method of coaxiality and unbalance deviations is proposed for multistage rotor. The vector error of each stage rotor is precise measured before assembly. The cumulative distribution functions of geometric and mass centers deviations could be obtained by the spatial posture propagation characteristic of each stage rotor error. The quality of the final assembly could be improved by properly selecting assembly orientations to minimize the coaxiality and unbalance deviations in the multi-stage rotor assembly. A circular profile measurement model with multi-systematic error is designed, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for single-stage rotor. The effects of the systematic errors and geometric and mass centers deviations of each stage rotor are analysed. The accuracy of the coaxiality and unbalance deviations measurement could be improved by error separation. A morphological filter with non-uniform sample angle is designed for single-stage rotor. The distribution function with real sample angle is obtained by analyzing the sample angle deviation caused by the proposed circular profile measurement model with four bias errors. The effects of the morphological operations and the coaxiality and unbalance deviations are analysed. The contact points could be obtained and the accuracy of the coaxiality and unbalance deviations assessment could be improved. The solution of the project could provide a model to explore the spatial error propagation characteristic of aeroengine rotor, and also could provide theoretical support for improving the assembly performance of civil and military aeroengines.
针对航空发动机转子系统装配精度差和合格率低,无法满足未来航空发动机对高速振动响应特性的需求问题,本项目探索误差矢量空间位姿传递机理,提出一种多级转子同轴度和不平衡量同步测调方法。该方法通过精密测量转子误差矢量,获取多级转子几何和质量偏心矢量累积量分布函数,最优匹配转子间安装相位,实现同轴度和不平衡量的同步测调;建立基于偏心、测头偏移、测球半径和倾斜误差的四偏置误差圆轮廓测量模型,分析各误差分量与转子几何和质量中心偏移量关系的敏感性,采用误差分离方法精确求解各偏置误差,提高同轴度和不平衡量测量精度;提出一种非等间隔形态学滤波方法,建立非等间隔采样角度分布函数,分析形态学滤波操作与同轴度和不平衡量的权重关系,有效提取装配面接触纹理几何属性信息,提高同轴度和不平衡量评定精度。项目的解决可为探索航空发动机转子误差矢量空间传递累积过程提供机理模型,为提升民用和军用航空发动机装配性能提供理论支持。
本项目提出了一种基于空间位姿传递的航空发动机转子同轴度和不平衡量同步测调方法。主要完成了以下工作:1)完成了同轴度和不平衡量的同步测调方法研究,通过获取多级转子几何和质量偏心矢量累积量分布函数研究,获得了最优匹配转子间安装相位;2)完成了基于偏心、测头偏移、测球半径和倾斜误差的四偏置误差圆轮廓测量模型建立,通过分析各误差分量与转子几何和质量中心偏移量关系的敏感性,采用误差分离方法精确求解各偏置误差; 3)完成了非等间隔采样角度分布函数建立,分析形态学滤波操作与同轴度和不平衡量的权重关系,有效提取装配面接触纹理几何属性信息。实现了多级转子同轴度和不平衡量测调精确度优于93%,最优安装相位调控精确度优于95%。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
五轴联动机床几何误差一次装卡测量方法
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
非线性挠性转子系统不平衡量在线识别方法的研究
可同步双转子系统内外转子不平衡量快速识别法研究
同轴对转桨扇双转子系统不平衡耦合振动靶向精稳抑制原理和方法
多自由度摆架模态分析与工件的动不平衡量测量