The study on sodium based dual-ion organic battery has been generally become the research focus for energy storage system due to its advantage of high performance, environmental friendly, abundant resources, and low cost. However, the organic material has inherent drawbacks of high solubility in solvent and low electronic conductivity in solid, which result in poor electrochemical performance. Developing highly stable polymer material with high electronic conductivity has been considered as an effective solution to overcome these issues. This project intends to design a 5,10,15,20-tetra(alkynyl) porphyrin and its metal complex as novel organic cathode materials for high performance sodium based organic dual ion batteries. By optimizing complex ions of the porphyrin polymer cathode, a high theoretical capacity of 264 mAh g-1 is expected based on a multi-electron transfer reaction. Benefiting from the strong π-π interaction force between the porphyrin molecules and the CNTs, the porphyrin polymer molecule can be in-situ controlled growth on CNTs through a coupling reaction between the alkynyl groups of the porphyrin molecule. The electrochemical reaction mechanism of the porphyrin cathode will be systematically studied, exploring the relationship between the electrode performance and porphyrin molecules with different complex ions. We expect the result of this project will lay a theoretical foundation for developing high performance organic cathode materials for energy storage.
钠基双离子有机电池因性能优异、环境友好、资源丰富、价格低廉等优点,逐渐成为储能领域的研究热点。然而,有机材料的高溶解性和低电子导电率两方面的缺陷极大地限制其性能的发挥。开发具有高电子电导率的聚合物电极材料成为解决该问题的关键方案。本项目拟设计一类5,10,15,20-四(乙炔基)卟啉及其金属配合物用于新型钠基双离子电池正极材料。通过优化卟啉配位离子的种类,基于多电子转移反应的卟啉材料的理论比容量可达264mAhg-1。拟通过引入具有高电子导电性的碳纳米管,利用卟啉分子与碳纳米管之间的π-π相互作用力以及炔基卟啉分子之间的偶联聚合反应,实现卟啉分子在碳纳米管上的原位生长,构筑具有良好电子传输网络、结构稳定的卟啉聚合物与碳纳米管复合的新型电极材料。系统探讨卟啉电极在电化学储能过程中的反应机制,揭示卟啉配位离子与其电化学性能的内在规律,为高容量有机正极材料的开发提供新思路和科学依据。
钠基双离子有机电池因性能优异、环境友好、资源丰富、价格低廉等优点,逐渐成为储能领域的研究热点。然而,有机材料的高溶解性和低电子导电率两方面的缺陷极大地限制其性能的发挥。在本项目的支持下,开发了一系列具有长循环稳定且拥有大功率性能的新型卟啉正极材料,放电比容量达200 mAh g-1。研究发现了乙炔基的原位电化学聚合行为能显著提高有机电极的循环稳定性能,且能够充当电子导线功能,从而使卟啉正极同时拥有长循环稳定和大功率。通过项目的研究,明确了电解液类型、金属配离子种类、电极结构与新型卟啉正极的储能特性的作用关系。结合理论计算和不同原位/非原位表征技术,阐明了卟啉分子中氮原子为电荷存储位点,且能够与阳离子和阴离子相互作用。发现了在电场作用下,高温可诱导乙炔基卟啉的聚合行为。这些成果为进一步开发了高稳定性的有机正极材料提供了思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
用于二次锂/钠基电池的新型开框架正极材料的研究
新型磷酸钒氧钠正极材料在钠离子电池中的应用
钠基过渡金属氧化物作为储钠正极材料的研究
新型低成本钠离子电池关键材料及其储钠机理