This project is to explore some foundenmental theoretic problems including the mechanism of the conversion and utilization of the fuel chemical energy, CO2 capture and their coupling mechanism in coal-based polygeneration systems.Based on the principle of the comprehensive cascade utilization of chemical and physical energy and the analysis method of energy level, the basic relatiship between the fuel chemeical energy and the separation work for CO2 and the equation of their energy level will be built, the coupling mechanism between the conversion and utilization of chemeicla energy during fuel conversion and the CO2 separation work will be revealed, the method for the optimal point of CO2 separation and the minimization of the sum of the CO2 separation work and chemical energy losses will be explored, and the mechanism to realize the low-energy-penalty CO2 capture in coal-based polygeneration systems will be revealed. Through experiment,the coupling mechanism between the utilization of chemical energy and CO2 separation work will be validated and the basic data for their relationships will be provided.Based on both theoretic and experimental results, the guidelines of the integration of polygeneration systems with low-energy-penalty CO2 capture will be summarized, and several promissing coal-based polygeneration systems which can realize both efficient energy utilization and low-energy-penalty CO2 capture will be proposed (the energy penalty for CO2 capture in these systems is predicted to be 3-5 or more percentage points lower than that in the traditional single product systems).The outcomes of the project will preliminarily form the integration principles and methods of the coal-based polygeneration systems which can realize low-energy-penalty and low-cost CO2 capture, and will provide new ideas and paths to the decarbonization during the utilization of the high-carbon energies.
本申请拟探索煤基化工动力多联产系统中燃料化学能转化利用与CO2捕集机制及它们耦合机理等基础理论问题。基于化学能与物理能综合梯级利用原理和能的品位分析方法,建立联产系统燃料化学能和CO2分离功之间的基本关联和品位特征方程,揭示燃料转化过程化学能转化利用与CO2分离功之间的耦合机理,探明最佳CO2分离点以及实现CO2分离功与燃料化学能损失最小机制,揭示多联产系统低能耗捕集CO2的实现机制。通过实验研究,验证"燃料转化过程化学能利用与CO2分离功之间的耦合机理",为特征方程提供关键实验数据。在机理研究和实验研究的基础上,总结凝练捕集CO2的联产系统的集成准则,提出具有应用前景的低能耗捕集CO2的多联产系统,比常规分产系统捕集CO2的能耗降低3-5个百分点或更多。研究成果将初步形成低能耗、低成本捕集CO2的联产系统集成机理与方法,为高碳能源利用过程中的CO2减排提供新思路和方法。
针对传统燃烧后分离CO2浓度低、分离能耗大,且燃烧火用损失大的缺陷,探索了煤基化工动力多联产系统中燃料转化过程化学能转化利用与CO2分离功之间的耦合机理,建立了燃料火用、燃料转化过程作功能力、CO2分离功、输出火用之间的关联关系,进而得出了CO2捕集能耗、燃料转化过程作功能力以及CO2分离功之间的关联方程及品位特征方程。在此基础上,探明了实现CO2分离功与燃料化学能损失的最小机制以及最佳CO2分离点。搭建了化工转化与CO2富集实验台,以及CO2吸收分离实验台,进行了燃料转化过程碳组分富集和CO2分离实验研究,验证了联产系统CO2捕集能耗最小化机制。并且,提出了具有应用前景的低能耗捕集CO2的多联产系统,比常规分产系统捕集CO2的能耗降低3-5个百分点。初步形成了低能耗、低成本捕集CO2的联产系统集成机理与方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
近 40 年米兰绿洲农用地变化及其生态承载力研究
基于多模态信息特征融合的犯罪预测算法研究
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
酰胺衍生基多功能材料结构调控及对CO2高效捕集/催化转化集成研究
镁基多孔配位框架材料的设计合成及其在CO2捕集和转化中的应用
煤基多联产系统CO2控制一体化技术理论基础研究
基于CO2捕集的煤高效制氢过程基础研究