This project launches the research of some key technologies of millimeter-wave (mm-wave) optoelectronic oscillator (OEO) with low phase noise level by taking the advantages of both innovative technique and novel devices based on new material. A novel all-fiber and graphene-based electrooptic modulator (EOM) operating within mm-wave range is proposed, which can largely improve the efficiency of electro-optical conversion in the mm-wave electrooptic modulation process, thus leading to the improvement of the signal to noise ratio (SNR) and reduction of the phase noise level. Meanwhile, by studying the principle and technique of a novel photonic millimeter-wave high-order harmonic generator,a low phase-noise master-slave mm-wave OEO structure can be realized by high-order harmonics injection-locked, which can solve the trade-off between the low phase noise level and the spurious mode noise as well as alleviate the innate difficulty with high-Q electrical filter in general OEOs. Finally, by taking the research in a novel hybrid interlock OEO structure with an injection-locked OEO and an phase locked electric oscillator, the phase noise level of the mm-wave OEO can be further reduced while the stability of the whole oscillation system is enhanced. In summary, by studying some key technologies in mm-wave OEO with low phase noise level, this project aims to develop some creative key devices in mm-wave system independently, so as to accelerate the technology progress of mm-wave and promote some practical applications of advanced mm-wave systems in our national very important areas.
本项目利用新型材料技术与器件创新的优势,提出低相位噪声毫米波光电振荡器关键技术的研究。通过研究新型全光纤结构基于石墨烯的毫米波高效率电光调制器,以大幅度提高毫米波电光调制过程中的电光转换效率,从而提高毫米波光电振荡器的信噪比和降低相位噪声电平;通过研究新型光子毫米波高阶谐波产生器的原理与技术,实现高阶谐波注入锁定的毫米波光电振荡器,克服毫米波光电振荡器存在的低相位噪声水平与高模式噪声之间的矛盾以及毫米波段高Q值电子滤波器的困难,以实现一种很低相位噪声的毫米波光电振荡器;通过研究毫米波振荡器光电互锁的结构系统,以进一步降低毫米波光电振荡器系统的相位噪声,提高振荡系统的稳定性。通过本项目低相位噪声毫米波光电振荡器关键技术的研究,自主创新地发展毫米波系统的关键器件,以加快我们毫米波系统的技术进步与重要领域的应用。
本项目利用新型材料技术与器件创新的优势,提出低相位噪声毫米波光电振荡器关键技术的研究。通过研究新型全光纤结构基于石墨烯的毫米波高效率电光调制器,以大幅度提高毫米波电光调制过程中的电光转换效率,从而提高毫米波光电振荡器的信噪比和降低相位噪声电平;通过研究新型光子毫米波高阶谐波产生器的原理与技术,实现高阶谐波注入锁定的毫米波光电振荡器,以克服毫米波光电振荡器存在的低相位噪声水平与高模式噪声之间的矛盾以及毫米波段高Q值电子滤波器的困难,并实现一种很低相位噪声的毫米波光电振荡器;通过研究毫米波振荡器光电互锁的结构系统,以进一步降低毫米波光电振荡器系统的相位噪声,提高振荡系统的稳定性。通过本项目低相位噪声毫米波光电振荡器关键技术的研究,自主创新地发展毫米波系统的关键器件,以加快我们毫米波系统的技术进步与重要领域的应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
基于谐波抑制与补偿线技术的非对称Doherty功放设计
基于脉搏波的中医体质自动辨识系统研究初探
量子点与光子晶体微腔的耦合
50GHz宽带混沌信号发生器
基于光电振荡器的低相位噪声微波信号远距离稳相传输技术研究
基于统计物理方法的振荡器相位噪声分析方法研究
低时延同时同频全双工相位噪声校正关键技术
MEMS振荡器电路非线性相位噪声机理的实验研究