Real time broadband spectrum analysis and electromagnetic environment parameter sensing play a significant role in the applications of civil electromagnetic spectrum management and military of joint electromagnetic spectrum military operation. The project presents a fundamental research on parametric sensing of electromagnetic wave environments based on the enabling technologies of microwave photonics. By compromising the innate advantages of broad bandwidth, low loss, low phase noise, and high stability with photonic solutions, the proposed project holds a great promise for the potential applications in the integrated information perception of electromagnetic wave environments. By investigating the microwave photonic methods for high sensitive detecting weak electromagnetic signals and the interrogation mechanism of two-dimensional electric fields sensing based on low phase-noise optoelectronic oscillators, the project aims to realize a technology of two-dimensional vector electromagnetic signals detecting with high sensitivity. By exploring the operational mechanism of low noise high stable coupled optoelectronic oscillators and restraining the phase noise interference both in optical domain and electrical domain, a photonic sampling system with extremely low clock jittering is targeted to build up for realizing high-speed photonic sampling of vector electromagnetic signals with high repetition frequency. By analyzing the signal model and nonlinear effects in the process of photonic signal processing through transforming the high repetitive and high-speed sampled optical signal into low repetitive and low-speed signal waveforms, the dynamic signal transformation mechanisms with high fidelity in the photonic signal processing are to be revealed to achieve a high-precision continuous acquisition of broadband electromagnetic signals. The project aims to break through the bottleneck of electronic ADC sampling system with constrained sampling rate and analog bandwidth so as to come true the complete integrated information perception of electromagnetic wave environments.
实时宽带频谱分析与电磁波环境参量感知在电磁频谱管理及“联合电磁频谱作战”等方面有非常重要的应用。项目提出基于微波光子技术的电磁波环境参量感知基础研究,通过融合微波光子的大带宽、低损耗、低相噪以及高稳定的技术优势,以应用于复杂电磁环境参量综合信息感知。项目通过研究基于微波光子技术的微弱电磁信号高灵敏感应获取方法、基于低相位噪声光电振荡器的二维电场传感与解调机制,以实现二维矢量电磁信号的高灵敏感知;通过研究低噪声、高稳定耦合型光电振荡机制,抑制光域与电域中的相位噪声串扰,构建极低时钟抖动的光子采样系统,实现矢量电磁信号的高重频-高速采样;通过研究高重频-高速采样光信号经降频-降速光子信号处理过程的信号模型与非线性效应,揭示降频-降速动态过程中的信号高保真传输机制,以实现宽带电磁信号的高精度连续采集接收。本项目研究旨在突破电子ADC采样率和模拟带宽的瓶颈效应,实现复杂环境下电磁参量综合信息感知。
实时宽带频谱分析与电磁波环境参量感知在电磁频谱管理及“联合电磁频谱作战”等方面有非常重要的应用。项目提出基于微波光子技术的电磁波环境参量感知基础研究,通过融合微波光子的大带宽、低损耗、低相噪以及高稳定的技术优势,以应用于复杂电磁环境参量综合信息感知。项目通过研究基于微波光子技术的微弱电磁信号高灵敏感应获取方法、基于低相位噪声光电振荡器的二维电场传感与解调机制,以实现二维矢量电磁信号的高灵敏感知;通过研究低噪声、高稳定耦合型光电振荡机制,抑制光域与电域中的相位噪声串扰,构建极低时钟抖动的光子采样系统,实现矢量电磁信号的高重频-高速采样;通过研究高重频-高速采样光信号经降频-降速光子信号处理过程的信号模型与非线性效应,揭示降频-降速动态过程中的信号高保真传输机制,以实现宽带电磁信号的高精度连续采集接收。本项目研究旨在突破电子ADC采样率和模拟带宽的瓶颈效应,实现复杂环境下电磁参量综合信息感知。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于全模式全聚焦方法的裂纹超声成像定量检测
吉林四平、榆树台地电场与长春台地磁场、分量应变的变化分析
数字输出式光子技术型微波频率感知研究
基于色散傅里叶变换光子混频的瞬时微波测频技术基础研究
基于张量分解的光子学微波信号频域空域联合压缩感知研究
基于压缩感知微波光子阵列的超宽带信号测量方法研究