Recently, with the rapid development of optical fiber communication networks, optical fiber sensors, and fiber lasers, various fields have placed more flexible demands on the birefringence of fiber-optic devices. However, under the limitation of current fiber drawing and device fabrication technologies, the birefringence of optical fiber devices is difficult to achieve flexible and precise regulation, and can not fully meet the new needs of the booming applications..In view of the above problems, this project plans to carry out research on localized regulation of optical fiber birefringence with femtosecond laser to achieve flexible and precise control of fiber birefringence, and achieve the fabrication of optical fiber devices with novel polarization characteristics. The specific research contents are as follows: (1) Exploring the physical mechanism of fiber birefringence induced in fibers with different materials under the irradiation of femtosecond laser; (2) Experimentally studying the localized regulation of optical fiber birefringence with femtosecond laser to achieve flexible and accurate regulation of fiber birefringence; (3) Fabrication of the polarization-independent FBG and high birefringence π phase-shift FBG with the technique of localized fiber birefringence regulation by femtosecond laser..Through the research of this project, we hope to master the key technologies of localized fiber birefringence regulation with femtosecond laser, and based on this technology, we can achieve the fabrication of several representative new fiber polarization devices to meet new demand in the fields of fiber communication, fiber sensing and fiber laser.
近年来,随着光纤通信网络、光纤传感器以及光纤激光器等领域的飞速发展,各领域对光纤器件的双折射提出了更多的灵活需求。然而,受制于当前光纤拉制和器件制备技术,光纤器件的双折射难以实现灵活精准的调控,无法充分满足各应用领域蓬勃发展的新需求。.针对以上问题,本项目拟开展光纤双折射的飞秒激光局域调控研究,以实现对光纤双折射的灵活精准调控,并利用该技术制备出具有新颖偏振特性的光纤器件。具体研究内容为:(1)探究飞秒激光作用下不同材料光纤双折射产生的物理机制;(2)实验研究光纤双折射的飞秒激光局域调控规律,实现对光纤双折射的灵活精准局域调控;(3)采用光纤双折射局域调控技术分别制备偏振无关FBG及高双折射π相移FBG。.我们希望通过本项目的研究,掌握光纤双折射的飞秒激光局域调控关键技术,并基于该技术制备出若干具有代表性的新型光纤偏振器件,以满足光纤通信、光纤传感以及光纤激光器领域蓬勃发展的新需求。
近年来,随着光纤通信网络、光纤传感器以及光纤激光器等领域的飞速发展,各领域对光纤器件的双折射提出了更多的灵活需求。然而,受制于当前光纤拉制和器件制备技术,光纤器件的双折射难以实现灵活精准的调控,无法充分满足各应用领域蓬勃发展的新需求。.针对以上问题,本项目开展了光纤双折射的飞秒激光局域调控研究,实现了对光纤双折射的灵活调控,并利用该技术制备出了具有新型偏振特性的光纤器件。具体研究内容为:(1)探究了飞秒激光作用下不同材料光纤双折射产生的物理机制,通过对比观察单模光纤在飞秒激光辐照前后的形貌和模场分布,我们认为飞秒激光辐照下光纤材料双折射产生的原因在于飞秒激光辐射导致光纤内部应力分布不均匀;(2)实验研究了光纤双折射的飞秒激光局域调控规律,制备出了双折射高达2.81×10-4的高双折射光纤,使用该高双折射光纤构造全光纤Lyot滤波器,并成功应用于扭转、横向负载和温度的传感测量;(3)采用光纤双折射局域调控技术分别制备FBG及π相移FBG;(4)基于现有的高双折射光纤进行了气体压力和温度的传感应用研究。.通过本项目的研究,我们掌握光纤双折射的飞秒激光局域调控关键技术,并基于该技术制备出若干具有代表性的新型光纤偏振器件,可满足光纤通信、光纤传感以及光纤激光器领域蓬勃发展的新需求。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
双粗糙表面磨削过程微凸体曲率半径的影响分析
电沉积增材制造微镍柱的工艺研究
基于体素化图卷积网络的三维点云目标检测方法
飞秒激光刻写偏振光纤光栅的微观机理及其在线偏振掺镱光纤激光器中的应用研究
光纤功能器件集成式微流体芯片的飞秒激光制备及其微全分析研究
聚合物光纤光栅的飞秒激光制备技术研究
飞秒激光湿法刻蚀技术制备光纤微流传感器