Histone deacetylases (HDACs) as key epigenetic regulators play a central role in the regulation of cellular properties that related to development and progression of cancer. Targeting HDACs to develop inhibitors represents one of the most promising therapeutical approaches in anticancer therapies. Most of the current inhibitors are pan-HDAC inhibitors without HDAC isoform selectivity. The major challenge in HDAC inhibitor development is finding drugs with HDAC selectivity to improve drug efficacy and safety. However, many HDACs exist as components of multiprotein complexes, the lack of structures for multiprotein HDAC complexes and the difficulty of probing the interactions of small molecules with macromolecular protein complexes have hampered the search for HDAC inhibitors with isoform-selectivity. The goal of this research is (I) to develop an advanced structural MS approach that can deliver structural information of protein complexes in a rapid and sensitive manner, and (II) to build up the architectures of HDAC multiprotein complexes to understand how HDAC complexes assemble and function, and (III) to probe the mechanisms of action of HDAC inhibitors. To achieve these goals, I will couple an innovative native top-down MS approach that I recently developed with hydroxyl radical footprinting and cross-linking MS. The native top-down MS method not only harvests the synergy between proteomics MS and native MS, but also enlarges the yield of experimental constraints describing multiprotein complexes. The integration of complementary techniques such as surface labelling and cross-linking MS will further enhance this approach. This research will greatly increase the level of structural insights of HDAC complex topologies and pave the path for the development of HDAC inhibitors with HDAC isoform-selectivity or HDAC sub-complex specificity. More broadly, this work will advance structural biology and drug discovery.
组蛋白去乙酰酶(HDACs)是重要的表观调控因子,与癌症的发生及恶化密切相关,也是目前最有前景的抗癌药物筛选的靶点之一。组蛋白去乙酰酶多以蛋白复合物形式发挥功能,但复合物结构信息的缺失极大地限制了药物作用机制的研究以及新型ˎ安全ˎ有效ˎ有选择性抑制剂的开发。本课题组的前期研究已经建立了可以同时获取蛋白质复合物序列ˎ结构和功能信息的native top-down质谱新方法及靶向药物筛选超滤液质联用方法,本工作拟以I型HDAC多蛋白复合物为研究体系,通过整合native top-down质谱及表面标记ˎ交联ˎ限制性水解等技术建立整合结构质谱方法,以实现I型HDAC多蛋白复合物的结构解析及药物作用机制研究,并在此基础上筛选新型抑制剂。这项研究不仅可以深化我们对HDAC复合物结构的认识,也将为开发具有HDAC亚型选择性或是HDAC亚蛋白复合物选择性的抑制剂开辟新方法、新思路,推动药物研发。
对蛋白复合物结构和动态性的研究对于理解其生物学功能及靶向新药研发至关重要。针对目前生物物理学方法在结构、动态、异质性等信息获取方面存在的问题,我们开发了高度互补的非变性自上而下质谱、氢氘交换质谱、超高压电喷雾非变性质谱等结构质谱方法,并进一步结合分子动力学模拟对靶向药物作用机制、变构动态机制、蛋白结构动态变化以及蛋白-蛋白复合物互作四种体系的科学问题进行了研究。针对HDAC8-抑制剂(SAHA、PCI-34051)体系,整合结构质谱方法显示PCI-34051比SAHA结合的更稳定且对HDAC8结构产生显著动态扰动,随着PCI-34051进入活性口袋,其与周围的基团形成π-π相互作用等紧密结合,并进一步牵动远端L2等区域结构的紧缩。这一研究为设计潜在的变构抑制剂提供了启示。在此基础上我们进一步设计了保留了PCI-34051母核结构的共加抑制剂,具有良好体外活性。针对磷酸化诱导的糖原磷酸化酶变构动态传递机制存在的问题,我们发现N-端磷酸化变构传递能量给250s区段,250s是打开活性口袋的关键区域,以类似扣动门把手的方式牵动tower helix之间的互作打开活性口袋,而不是前人推测的280s区段。此外,我们在研究中发现重组蛋白上常见的His-标签对蛋白的气相结构有较大影响,在溶液相会产生局部影响。针对spike-ACE2复合物体系,我们研究发现spike RBD上的N-糖具有增强spike-ACE2互作的效果;spike本身具有不同的构象体,且ACE2或抗体结合对于spike的结构动态变化产生不同的影响,这些信息可以用来指导抗体药物设计,潜在为病毒株突变带来的免疫逃逸提供解决方案。综上,我们建立的整合结构质谱平台是生物物理学方法的有效补充,在药物作用机制、蛋白结构动态变化、蛋白-蛋白相互作用等研究方面具有广阔的应用前景,将推动结构生物学和新药发现。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
农超对接模式中利益分配问题研究
低轨卫星通信信道分配策略
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
I型组蛋白去乙酰化酶家族在肿瘤免疫原性调控中的作用及机制
组蛋白去乙酰化酶抑制剂抗鼻型NK/T细胞淋巴瘤的机制研究
新型组蛋白去乙酰化酶抑制剂的设计和合成
组蛋白去乙酰化酶抑制剂干预药物耳毒性的表观遗传机制