This program of Fundation is to study the problems of isometric approximation and isometric extension. Since the nice specialities of isometric(equidistant).mapping, they are very useful subjects to research that whether a isometric mapping defined a local region can be extended to whole Banach space, under what conditions is a “DOPP”(i.e. distance one preserving property) mapping can be a isometric mapping, and the approximation problem of the “almost isometric” operator by isometric operator, etc. In the past three years, we obtained some isometric extension theorems about some concrete Banach spaces, some relations between DOPP and isometric mapping in Hilbert space, and some results concerning the isometric approximation.
等距算子是理论与应用中最重要的一类算子。由于现实中不存在精确的等距算子,故研究其扰动理论(几乎等距算子)就十分必要;又因常常接触到的是局部区域上的等距算子,因而研究其(仿射)延拓问题就极有意义;此外。各种空间上的等距算子的表现理论、等距同构与嵌入理论及等距算子在数学各专题上的应用均是我们研究的内容。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于旋量理论的数控机床几何误差分离与补偿方法研究
现代优化理论与应用
多元化企业IT协同的维度及测量
Fe-Si合金在600℃不同气氛中的腐蚀
水平地震激励下卧式储罐考虑储液晃动的简化力学模型
巴拿赫空间中逼近等距算子与非扩张映像的延拓及相关逼近问题
巴拿赫空间中等距算子的延拓及相关理论
巴拿赫空间的等距逼近理论
巴拿赫空间中等距映像与Lipschitz映像的延拓及相关问题