"非定常流动的高精度实验与数值模拟方法"已被列为力学学科重点关注领域的重要发展方向之一。非定常流动与控制的数值模拟或要求准而快,或要求稳而长。发展计算流体力学(CFD)的具有并行本性的高分辨率、高精度算法是CFD研究及更准确、省时、稳定的模拟、预测和控制非定常流动问题的一个核心和关键。.基于高性能并行计算非定常流动的目标,本申请将建立、发展并研究空间导数任意阶精度的三点显式紧致格式、非定常流动模型方程具有并行秉性的高稳定性的显式差分格式、求解非定常不可压流动基本控制方程组的显式紧致差分算法;并在此基础上编制串、并行计算程序,完成对不可压槽道湍流和双扩散对流系统等典型多尺度、复杂流动问题的精准模拟。本申请研究将有助于丰富CFD的研究方法和手段,促进CFD新方法和新理论的发展;也将有助于高性能软件的开发和高性能计算的应用,推动高性能计算技术的发展
非定常流动与控制的数值模拟或要求准而快,或要求稳而长。发展计算流体力学(CFD)的具有并行本性的高分辨率、高精度算法是CFD 研究及更准确、省时、稳定的模拟、预测和控制非定常流动问题的一个核心和关键。. 项目按照研究计划完成了基于高性能并行计算非定常流动的目标内容。通过本项目支持,课题组完成与项目研究内容相关的研究论文19篇(其中已发表13篇),完成研究生学位论文7篇。本项目取得的主要研究成果如下:建立、发展并研究了空间导数任意阶精度的三点显式紧致格式、非定常流动模型方程具有并行秉性的高稳定性的显式差分格式、求解非定常不可压流动基本控制方程组的显式紧致差分算法;并在此基础上编制串、并行计算程序,完成对不可压驱动方腔、自然对流、双周期双剪切层流动和双扩散对流系统等典型多尺度、复杂流动问题的精准模拟;探索了外磁场作用下导电流体的高精度数值模拟方法、适于水动力流噪声计算的低色散、低耗散时空高精度差分算法等。. 本项目的研究将有助于丰富CFD 的研究方法和手段,促进CFD 新方法和新理论的发展;也将有助于高性能软件的开发和高性能计算的应用,推动高性能计算技术的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
物联网中区块链技术的应用与挑战
非定常不可压Navier-Stokes方程组的高精度隐式紧致差分方法及其多重网格算法研究
非定常不可压磁流体力学方程组的显式算法及其应用研究
3维不可压缩MHD方程组的全离散隐式/显式差分有限元算法
3维非定常N-S方程的隐/显式数值格式的研究