Animal-robot is the cutting-edge and high-tech emerging field in the world today. The knowledge discovery of nerve nuclei related to the motion control in brain and the corresponding relationship of the motor behavior are the critical scientific issues in the control mechanism of the brain in animal-robot. However, these problems of carp are not clear at present. Up to now, we can change the behavior of carp by electrical stimulation at some sites in the brain. And we have achieved that wired control in carp robot by electrical stimulation. On the basis of previous research, our project is based on the academic thinking of motion controlled by the brain nerve nuclei, and apply some technology to reveal the brain control site and the corresponding relationship of the motor behavior from different angles. We apply some technology in this project such as: damaging the brain to realize the loss of movement underwater, stimulating the brain out of the water to control the movement under light anesthesia and electrical stimulating the brain to cause carp movement in the free state. In this project, we also find and locate the nerve nuclei related to the motion control in brain to explain the corresponding relationship between the nerve nuclei and movement behavior by the technique of anode current mark, color orientation of electrode stimulation points, serial section tissue and building the three-dimensional digital brain stereotaxic atlas of brain by MRI. Moreover, we evaluate and rectify the accuracy of the control site of brain and the corresponding relationship between the site and the movement behavior by the method which combine the animal experiments about two-layer multi-channel water maze and the motion object detection by computer vision technology. The research in this project has a great significance in improving the accuracy of the biobehavioral control in aquatic animals robot and master the original core technology .
动物机器人是当今世界新兴的前沿高科技领域,脑运动控制神经核团的知识发现及其与运动行为的对应关系是动物机器人脑控制机理的关键科学问题,但这些问题对于鲤鱼尚不清楚。本项目在观察到电刺激脑组织某些位点可引起鲤鱼行为改变并能够无线遥控其运动的前期研究基础上,基于运动受脑神经核团支配的学术思想,拟通过损毁脑引起鲤鱼水下运动丧失、离水浅麻醉状态电刺激脑调控动作、水下自由状态遥控电刺激脑诱导运动的实验,从不同角度揭示脑控位点及与运动行为的对应关系;通过阳极电流标记、电极刺激点显色定位、连续组织切片、磁共振成像构建三维数字化脑立体定位图谱等手段,发现脑控神经核团并立体定位,阐明其与运动行为的对应关系;结合双层多通道水迷宫动物实验与计算机视觉技术检测运动目标,进行脑控位点及其与运动行为对应关系准确性的评判和纠偏。本项目的研究对提高水生动物机器人生物行为控制的精确性以及掌握原创性核心技术具有重要意义。
生物机器人是当今世界具有前瞻性和战略性的前沿高科技领域。本项目以鲤鱼机器人为研究对象进行了基础性研究。通过实验研究了小脑对运动行为的影响;面向不开颅法建立了三个坐标系并两次转换;借助脑立体定位仪将自制电极植入各脑运动区,应用电刺激技术发出模拟电刺激信号,通过离水实验和水下实验研究了脑刺激位点坐标参数和适宜电刺激参数,发现了部分脑控制位点与运动行为对应关系;应用3.0T和7.0T磁共振成像仪获取了颅脑三维立体位置、脑组织与颅外特征点对应关系及进行了脑运动神经核团的知识发现;制备组织切片并染色观察神经元和神经核团,再通过计算机图像三维立体构建软件初步进行了小脑脑图谱构建;运用图像分割与识别方法,蓝点标记组织切片,初步揭示了部分脑运动神经核团与运动行为对应关系;研制水下无线遥控系统,成功控制了鲤鱼机器人前进、左转和右转运动;研制立体水迷宫系列装置与方法,结合双目立体计算机视觉技术与水迷宫对鲤鱼机器人运动控制准确性进行了检测。应用多学科技术初步揭示了部分脑运动神经核团支配运动行为的规律并初步进行了小脑脑图谱构建,解决了本项目关键科学问题。关键数据:采用脑立体坐标轴转换进行脑运动区控制位点电刺激,取20尾鲤鱼(33.26±1.12)cm,以头部与躯干第一片鱼鳞交界处为原点,控制位点坐标值:前进位点(-1.67,-1.15,-18.17)mm、成功率70%,左转位点(3.16,-3.54,-19.15)mm、成功率65%,右转位点(-2.06,-1.82,-20.85)mm、成功率75%;电刺激方式为连续波输出,正负脉冲,电压5-15V,波宽0-30ms,频率5-20Hz。本项目研究对我国掌握水生动物机器人原创性核心技术具有重大科学意义。取得超预期计划的多项成果:发表论文18篇,申报专利26项(已授权13项),撰写专著2部,获批省基金1项,获科技竞赛奖12项,培养研究生13名。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
脑意图受限映射下的四足机器人脑机行为交互机理与协作控制研究
基于光点生物运动意念诱发的中风康复机器人脑机协同控制与训练评估技术
面向脑MRI多解剖结构重要深层神经核团的联合精细分割与形态分析研究
脑控机器人系统及其运动控制算法的研究