The next generation nonvolatile resistive memory (RRAM) with excellent performances in terms of high-speed, high-density, low power consumption and higher reliability has demonstrated significant potential for future high-performance computers, and image information processing and digital control systems. However, fabrication of such RRAM that can meet the criteria for practical use still remains a challenge to researchers to date. In this project, we will try to realize the growth of controlled doped SiC nanowire(NW) with a single crystalline structure by accurately tailoring organic precursor pyrolysis. The as-prepared doped NWs will then be used as biluding blocks to construct a new high-performance nanoscale RRAM devices via the bottom-up strategy combined with microelectronics and scanning electron microscope technologies. Then the obtained RRAM will be systematically characterized to evaluate the resistance switching behavior in its memory cells . Specifically, we will deeply analyze the experimental results to reveal the intrinsic relationship between the device performance and various factors including the nanowire structure, quantum confinement effects, the dielectric layer, doping types, band structure, interficial effects as well as processing parameters, with the emphasis on the classification of the resistance switching mechanism.Finally,we will reveal scientific problems such as what are the key factors and regulation approaches in determining the superior properties of the SiC NW based RRAM. The implementation of this project is expected to enrich and develop the basic theoretical studies of the nonvolatile memory. The relevant work will also provide some valuable basic data and key technologies for the fundamental research and fabrication of the SiC NW based RRAM.
具有高速度、高密度、低功耗及更高可靠性的下一代非易失性阻变存储器(RRAM)在未来高性能计算机、图像信息处理及数字化控制等领域具有诱人的应用前景。然而如何获得能满足应用要求的RRAM,是一个极具挑战性的课题。本项目拟通过有机前驱体热解工艺参数的精细控制,实现单晶SiC纳米结构的可控掺杂。采用微电子工艺并结合扫描电镜技术制备一种新的,性能优异的 SiC纳米线RRAM。项目将系统表征和评价SiC纳米线RRAM存储单元的阻变特性,分析和揭示纳米线结构、量子限域效应、介电层、掺杂类型、能带结构、界面效应及工艺参数与RRAM性能间的内在关系,阐明SiC纳米线RRAM的工作机理,从而最终揭示决定RRAM性能优异的关键因素和调控途经等科学问题。项目的实施将丰富和发展非易失性存储器基础理论研究,相关工作将为SiC纳米线RRAM的基础研究和器件化提供一定的基础数据和关键技术。
具有高速度、高密度、低功耗及更高可靠性的下一代非易失性阻变存储器(RRAM)在未来高性能计算机、图像信息处理及数字化控制等领域具有诱人的应用前景。寻找适合于阻变存储器的介质材料,完善电阻转变的物理机制,并制备性能优异的阻变存储器一直是半导体工业界和科学界关注的热点之一。本项目通过有机前驱体热解工艺参数的精细控制,制备了阳离子Al和阴离子N可控掺杂的SiC纳米线。采用微电子工艺并结合扫描电镜技术制备了一种新的,性能优异的 SiC纳米线RRAM。项目系统表征和评价了SiC纳米线RRAM存储单元的阻变特性,分析和揭示纳米线结构、量子限域效应、掺杂类型、不同导电机制、电极材料的活性及势垒、工作温度等因素对阻变存储器性能的影响,探讨了SiC纳米线RRAM的工作机理,课题进展4年来,发表论文7篇,其中SCI/EI论文6篇,授权发明专利3项,申请发明专利2项。相关工作为SiC纳米线RRAM的基础研究和器件化提供一定的基础数据和关键技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
冲击电压下方形谐振环频率选择超材料蒙皮的沿面放电长度影响因素研究
考虑铁芯磁饱和的开关磁阻电机电感及转矩解析建模
含智能软开关的智能配电网分布式供电恢复方法
非均质储层纳微米聚合物颗粒体系驱油实验研究
锡青铜超疏水表面纳秒激光制备及润湿性转变机理研究
基于互补掺杂SiC纳米线的器件组装及其电学性能的研究
基于忆阻的非易失性动态存储建模分析及数据组织优化
基于高K浮栅的有机非易失性浮栅存储器件研究
基于复合蚕血液蛋白质柔性透明可穿戴生物忆阻器的制作及其非易失性阻变特性研究