Nonlinear Schrodinger equation is one of fundamental equations in mathematical physics, with extensive and deep applications in quantum mechanics and nonlinear optics. In recent decades, various generalizations of classical (NLS) were introduced, which include two important elliptic PDE models: quasilinear Schrodinger equations and nonlocal Schrodinger equations. In this project, we will apply variational methods to study the existence, multiplicity and geometric properties of solutions for these equations. since the two equations are quasilinear and nonlocal respectively, we must encounter many difficulties and develop new skills to study these problems by classical variational methods. More precisely, we will deal with: the uniqueness of positive solutions for quasilinear Schrodinger equations on the whole space; the multiplicity of and sign properties of solutions for general quasilinear elliptic problems in bounded domains without Ambrosetti-Rabinowitz condition; when the compactness properties of the energy functional are not established, the existence and multiplicity of nodal solutions for the nonlocal Schrodinger equations. These challenging mathematical problems have become the current research frontier in the fields of nonlinear analysis and partial differential equations, and have great importance both in theory and application.
非线性Schrodinger方程是一类基本的数学物理方程,在量子力学和非线性光学中有着广泛而深刻的应用。最近几十年,关于该方程的许多重要推广被引入,这其中包含两类具有变分结构的椭圆型方程:拟线性Schrodinger方程和非局部的Schrodinger方程。本项目拟采用变分方法研究这两类方程解的存在性、解的个数和解的几何性质等。由于拟线性微分项和非局部项的出现,使用通常的变分方法会面临一些新的问题,解决起来需要新的方法和思路。具体研究内容如下:全空间上拟线性Schrodinger方程正解的唯一性;当非线性项不满足(AR)条件时,有界区域上拟线性椭圆方程解的多重性和符号性质;当能量泛函难以验证紧性条件时,非局部椭圆方程变号解的存在性和多重性。这些问题重要且具有挑战性,处于非线性分析和偏微分方程领域的研究前沿,具有重要的理论意义和应用价值。
拟线性薛定谔方程和非局部的Chern-Simons-Schrodinger方程在非线性光学、凝聚态物理以及超流体理论中有着广泛应用。本项目应用变分方法与临界点理论以及流不变集的技巧,研究了与两类方程有关的椭圆型方程非平凡解的存在性、多重性以及解的符号性质等问题。我们主要在如下方面取得重要进展:(1)对于带有反势阱的拟线性薛定谔方程,证明了基态解的不存在性。(2)对于低于四次增长的拟线性薛定谔方程,应用变分扰动方法和流不变集理论,证明了无穷多变号解的存在性。(3)研究了带有有界系数的拟线性薛定谔方程,证明了无穷多径向解,非径向解和变号解的存在性,将Bartsch和Willem的结果推广到拟线性的情形。(4)对于有界区域上的一般形式的拟线性椭圆边值问题,应用正则化方法,证明了正能量和负能量的变号解的多重性。(5)对于带有一般非线性项的拟线性薛定谔方程,应用参数化方法和非光滑临界点理论,获得了解的的多重性结果。(6)对于带有一般非线性项的Chern-Simons-Schrodinge方程,证明了无穷多变号解的存在性。这些结果丰富和完善了非线性分析领域的相关理论,推动了变分方法与偏微分方程分支的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
氯盐环境下钢筋混凝土梁的黏结试验研究
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
几类分数阶非局部椭圆型方程的变分问题研究
某些变分型式的拟线性椭圆型方程研究
一般拟线性椭圆方程的若干变分问题研究
带非局部项的拟线性薛定谔方程的若干变分问题研究