Wearable and flexible electronics have found numerous applications in various fields, where the key is the combination of the flexible mechanical properties and electrical functionalities. Reduced graphene oxide (rGO) has been widely used as the electrical additives to fabricate the composite materials for the applications in flexible electronics. Among them, the deposition of rGO on nanofibrous materials through vacuum filtration has been demonstrated to enhance the capability of the rGO nanolayer for deforming. However, the effect of the material parameters of the nanofibrous substrates and rGO nanolayer on this improvement is not clear. In addition, the fabrication of the rGO deposited nanofibrous materials have not been optimized for flexible electronic applications. In this proposal, the rGO composite materials will be fabricated by using the silk fibroin nanofibrous materials as the flexible substrates and depositing rGO through vacuum filtration. The factors such as the fiber morphology, nanofibrous structure, rGO deposition parameters and patterned electric circuits will be controlled, and then the effect of these factors on the property changes of the rGO/silk composite materials during deforming will be comprehensively investigated by characterizing the material properties under the conditions of static and mechanical loading. After then, the optimized rGO/silk nanofibrous materials combining the excellent mechanical properties and electrical functionalities will be fabricated. At last, the performance, durability and biological safety of the rGO/silk materials for serving as wearable flexible electronics will be studied. We expect that this research will facilitate the application of rGO and silk fibroin materials for flexible electronics and wearable devices, and overcome some problems existed in the fabrication of composite nanofibrous materials.
可穿戴柔性电子材料具有巨大的应用前景,其柔性和电学功能的有机结合至关重要。还原氧化石墨烯(rGO)被广泛用来制备柔性电子材料,其在纳米纤维材料上的抽滤沉积可以提升rGO层的形变能力,然而多种因素对这一提升的影响并不明确,也并未针对柔性电子的应用进行优化。本项目拟基于丝素蛋白纳米纤维材料的柔性基底,通过抽滤沉积制备rGO复合材料。通过调控纤维形态和结构、rGO沉积参数和电路结构等因素,以及深入表征材料在静态和形变状态下的性能,来研究这些参数对形变过程中材料性能出现变化的影响和作用机理,并以此优化制备结合了优良力学性质和电学功能的复合纳米纤维材料。然后,测试其用作可穿戴柔性电子材料的性能、耐用性及生物安全性,综合评价rGO/丝素蛋白材料用作柔性电子材料的潜力。本项目研究结果将有望推动rGO和丝素蛋白的复合材料在柔性电子和可穿戴设备领域的应用,解决当前复合纳米纤维材料制备中面临的一些难题。
基于柔性电子材料的可穿戴力学传感器在人体健康和运动监测中的应用日益受到关注。本项目基于具有无纺纤维结构的静电纺丝材料,通过调控微结构和优化导电修饰方法,旨在制备具有优良传感性能和可穿戴性的还原氧化石墨烯/丝素蛋白(rGO/silk)柔性导电纤维材料,测试其用于可穿戴力学传感的表现,并揭示其纤维结构和其他微结构对其性能的影响。本项目成功制备了具有力学传感能力的rGO/silk材料,并将其用于关节活动和脉搏等多种人体力学信号的传感应用,研究了纤维结构以及rGO导电层厚度和微裂纹结构对材料基本性能和力-电响应性的影响和机制,对柔性电子材料及可穿戴力学传感器的开发具有一定的指导意义。基于对rGO/silk材料用于可穿戴力学传感应用潜力不足的考虑,在此国家自然科学基金的资助下,进行了相关领域的研究工作,包括rGO/silk材料用于心肌再生医学应用的研究,碳纳米管/自粘绷带导电材料用于可穿戴力学传感应用研究,以及PDMS纤维材料的制备及其可穿戴光纤和力学传感器应用研究,均为柔性电子材料的开发及其生物医学和可穿戴应用提供实验和理论支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
动物响应亚磁场的生化和分子机制
柔性石墨烯电极材料的制备及其性能研究
石墨烯/芴-三苯胺共聚物复合纳米纤维材料的光电性能
石墨烯基纳米多孔粒子复合材料的制备及其性能研究
钒氧化物-石墨烯纳米复合材料的制备及催化苯羟基化性能