Since Yalong River is rich in water, wind and solar energy, the development of wind-solar-hydro power complementary system is of great significance for optimizing the power grid structure and improving the utilization rate of clean energy. The first step to study the joint optimization operation of multi-energy is to determine the reasonable bundled capacity and scheduling strategy. The principle is to support the wind and solar power consumption with hydropower and support the hydropower development with wind and solar power, and the core is the complementary relationship among wind, solar and hydro power, which is influenced by the planning objectives, multi-dimensional constraints as well as the development scale of hydropower. Therefore, this study will establish an optimization model and propose a corresponding solving method to determine the matching capacity of the wind-solar-hydro power complementary system based on the complementary characteristics analysis among the wind, solar and hydro power. Based on that, the underlying key variables of the system will be identified, the relationship between variables and optimization objectives can be quantified, the complementary relationship among wind, solar and hydro power and its dynamic evolution law under different objectives and multi-dimension constraints can be revealed, and the impact of different objective preferences on the complementary relationship can be illustrated. With the above theoretical results, the matching capacity, the dynamic development scenarios as well as the operation strategy of the wind-solar-hydro power system for Yalong river basin can be determined under the current and near-future development of hydropower, and this can provide decision support for the construction, operation and management of the demonstration base for the clean energy of wind, solar and hydro power.
雅砻江流域具有得天独厚的水能、风能和太阳能资源,风光水多能互补开发对优化流域电网电源结构,提高清洁能源利用率具有重要意义。风光水多能互补开发首先要确定风光水合理捆绑容量(匹配容量)与调度策略,其原则是以水电容量支持风光消纳、以风光电量支持水电发展,其核心是风光水多能互补关系。互补关系受系统规划目标和多维约束的影响,并随水电开发规模的不同而发生显著变化。为此,本项目拟挖掘风光水电的出力特性,构建风光水多能互补容量匹配优化模型及其求解方法;在此基础上,识别互补系统的底层关键变量,挖掘各关键变量间、变量与系统优化目标间的定量关系,揭示不同目标、多维约束下风光水多能互补关系及其动态演变规律,阐明不同目标偏好对风光水互补关系的影响与作用机制;并据此确定雅砻江水电开发现状与近期开发规划两种情景下风光水匹配容量、动态开发方案及其调度策略,为流域风光水互补清洁能源示范基地建设、运行与管理。
发展风光水等可再生能源已成为推进能源转型的核心内容和应对气候变化的重要途径。以风光水多能互补运行系统为研究对象,在流域进行时空协调分析的基础上,建立风光水多能互补容量匹配优化模型,揭示风光水多能互补关系在不同目标偏好和多维约束下的表现形式,并据此研究不同水电开发规模、不同电网工作位置下风电、光伏合理捆绑容量及其调控策略。具体创新如下:(1)提出了风光捆绑配置评价指标体系,基于此开展了二滩及附近风光出力的容量配置研究,得到最优风光装机容量比即为光电装机占总风光装机容量的0.52。在该配比下能较好发挥风光之间的互补性,降低风光联合出力的波动性,使得系统整体出力平稳性高。(2)构建了两种匹配已有水电站的风光捆绑容量配置模型,一种系统以平稳出力的形式输出,即以保证出力方式承担电力系统的基荷。二是以系统要求的负荷过程并网,即可承担电力系统的峰荷。(3)水文随机性对于不同风光容量下的弃风光率有较大影响,在基荷模型中配置较小的风光捆绑容量会使系统更稳定,而在峰荷模型中配置较大风光捆绑容量会使系统稳定;考虑水文随机性后,在给定的典型负荷曲线下,匹配二滩水电站最为合理的风光捆绑容量为810MW。(4)针对流域中水电不同建设阶段,利用功率谱密度理论进行多能源时空协调分析,得出不同水电建设阶段下水电协调风光电站的最优协调距离:在流域中只有二滩水电站的情景下,水电最优的协调范围为200 km ~ 400 km;而流域中有锦屏一级、锦屏二级、官地、二滩水电站的情景下,水电最优的协调范围为每个水电站周边100 km~ 300 km。为规划前期根据协调距离确定相应捆绑及建设的风光电站位置提供指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于分形维数和支持向量机的串联电弧故障诊断方法
基于二维材料的自旋-轨道矩研究进展
雅砻江流域梯级风光水多能互补协调控制与调度策略研究
流域风光水多能互补运行中风光出力不确定性研究
电力/电量补偿协同的风光水多能互补容量优化配置研究
雅砻江流域风光水多能互补特性分析与耦合优化建模研究