Installed capacity optimization of wind-solar-hydro multi-energy complementarity is quite important to guide the orderly development of new energy and enhance the comprehensive utilization efficiency of clean energy. However, the dynamic sequential operation characteristics of complementary system are not fully considered in the planning of installed capacity at present, thus limiting the multi-energy compensation benefits in electric power and electric energy. This study takes a demonstration base of wind-solar-hydro multi-energy complementary in Yalong River Basin as the research area, and proposes an installed capacity optimization method considering electric power and electric energy compensation. First, the study analyzes the dynamical control mechanism of the optimal carryover storages of cascade reservoirs with large-scaled wind and photovoltaic powers integrated. Then, a wind-solar-hydro multi-energy and multi-scale coordinated dispatching method is proposed, which considers the compensation benefits of long-term electric energy and short-term electric power. Finally, an installed capacity optimization method is proposed, which can achieve interactively integrated modeling of installed capacity optimization, long-term electric energy compensation benefit analysis, and short-term electric power compensation benefit analysis. This research can not only guide the planning and construction of the demonstration base of wind-solar-hydro multi-energy complementary in Yalong River Basin, but also provide reference experience for similar areas at home and abroad to guide the sustainable development of new energy.
风光水多能互补容量优化配置对引导新能源有序开发,提升清洁能源综合利用效益至关重要。然而,目前风光水容量规划未能充分考虑互补调度系统的动态时序运行特征,限制了多能互补电力、电量补偿效益的发挥。本项目以雅砻江风光水互补清洁能源示范基地为研究区域,提出电力/电量补偿协同的风光水多能互补容量优化配置方法。项目拟从解析大规模风光接入背景下流域梯级水电站长期余留库容控制机制入手,提出兼顾长期电量补偿和短期电力补偿效益的风光水多能多时间尺度协调互补调度方法,进而实现风光水多能互补“容量优化配置-长期电量补偿效益分析-短期电力补偿效益分析”互馈一体化优化建模,提出电力/电量补偿效益均衡的流域风光水多能互补容量优化配置方法。项目研究成果不仅可指导雅砻江风光水互补清洁能源示范基地的规划、建设,还可为国内外相似地区引导新能源可持续发展提供参考经验。
在双碳目标下,我国创新提出依托大型水电基地发展水风光多能互补清洁能源开发利用模式,但在容量配置、调度运行和风险控制等方面仍存在诸多难题。本项目面向大规模多能互补系统规划建设和运行管理的基础科技需求,以“互补机制-协同调度-效益评价-容量配置”为创新链条,解析水风光能的多时空尺度互补特性和机制,提出电力/电量补偿协同的多能互补调度运行方式,以及面向多层级、多对象的多能互补系统综合风险效益评价方法,探求兼顾风险和效益的多能互补容量配置方案,这对于提高多能互补系统在建设、运行、管理全生命周期内的安全保障水平,引领和推动水利工程和能源交叉学科领域的融合发展具有重要科学价值和实际意义。主要创新成果如下:.(1)提出电量/电力补偿协同的多时间尺度嵌套的多能互补调度运行方式。结果表明:大规模风光接入背景下,大型水电站水库的中长期水位应提前并加深消落,以增加枯期发电量并减少汛期弃水;互补运行可提高系统的枯期调峰能力,缓解汛期外送通道竞争;梯级水电站能对风光不确定性功率进行实时电力补偿调节,显著改善送电质量,提高供电可靠性。.(2)构建水风光多能互补调度风险和效益评价指标体系,定量评估系统调度运行的风险和效益。结果表明:互补运行可缓解多能源外送通道竞争,使系统弃电减少92.29%,发电量、发电效益提高1.98%、1.78%,会加剧水库下泄流量与库水位波动,增加水库运行管理风险,且在汛前低水位时期会存在集中失负荷现象。.(3)建立兼顾风险和效益的水风光多能互补容量优化配置方法。结果表明:随风光接入规模的增加,互补系统的发电效益、发电量先增加后趋于稳定,失负荷概率先增加后减小,最后趋于平缓,合适的容量配置方案可以兼顾系统运行经济性和供电可靠性;雅砻江梯级水电最优风光接入规模为7440、11160MW,相对于原规划方案发电量、发电效益提高9.95%、26.69%,失负荷概率降低43.24%。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于SSVEP 直接脑控机器人方向和速度研究
基于多模态信息特征融合的犯罪预测算法研究
面向云工作流安全的任务调度方法
流域梯级风光水多能互补捆绑容量与调控策略研究
雅砻江流域风光水多能互补运行的优化调度方式研究
雅砻江流域风光水多能互补特性分析与耦合优化建模研究
面向省级电网的风光水多能互补调度问题研究