微分方程的退化同宿轨附近的动力性态

基本信息
批准号:11671058
项目类别:面上项目
资助金额:42.00
负责人:朱长荣
学科分类:
依托单位:重庆大学
批准年份:2016
结题年份:2020
起止时间:2017-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:舒永录,王智强,罗广萍,龙斌,孔磊,李治平,潘娟,吴长青
关键词:
非双曲性分支异宿轨同宿轨
结项摘要

From the last 60s, many famous mathematicians, such as V. K. Melnikov、L. P. Silnikov、S.-N. Chow、J. K. Hale and so on, studied the persistence of a known homoclinic (heteroclinic) solutions under small perturbations. Their results implied that the homoclinic (heteroclinic) solutions can exist under suitable transverse conditions. Based on their work, we will consider the following problems: 1, For an autonomous differential equation with degenerate homoclinic solution, consider the existence of a homoclinic manifold consisting of a family of homoclinic solutions under perturbations. The radius of the manifold along the normal directions will be given. 2, Investigate the periodic solution bifurcated from a known heteroclinic loop consisting of degenerate heteroclinic solution. By the co-diagonalization method, the conditions of the coexistence of periodic solutions are considered. 3, When the unperturbed system has a bounded solution which is homoclinic to a nonhyperbolic equilibrium. We investigate that the perturbed system has multiple homoclinic solutions which are homoclinic to different equilibria, bifurcated from the nonhyperbolic equilibrium. 4, For the homoclinic bifurcations, the known results show that the solvabilitis of the Melnikov function are two-degree homogeneous polynomials without the tangent parameter. We will consider the new solvabilitis which are nonhomogeneous polynomials with the tangent parameter.

自上世纪60年代以来,有很多著名数学家,如V. K. Melnikov、L. P. Silnikov、S.-N. Chow、J. K. Hale等,研究过有同宿轨的自治发展方程,在小扰动下发生的动力行为:在适当的非退化条件下,扰动系统的非退化同宿轨能够保持。本项目将研究:1,研究从退化同宿轨分岔出由一族同宿轨构成的同宿流形,给出同宿流形沿同宿轨法向上的半径估计;2,考虑由退化异宿轨构成的异宿环分岔出周期解的问题,找到决定扰动系统存在周期解的分岔函数,通过多个矩阵同时对角化的方法,给出系统存在多条不同周期解的判据;3,考察同宿于非双曲平衡点的同宿轨的分岔的问题,得到平衡点和同宿轨同时发生分岔的条件,给出系统有多个平衡点和多条同宿轨的参数条件;4,对于同宿轨的保持性,前人得到不含切向参数的二次齐次型分岔函数,本项目研究含有切向参数的高次项的非齐次可解性条件,得到扰动系统存在同宿轨的新判据。

项目摘要

早在上个世纪60年代,著名的数学家Melnikov就用几何的办法研究了平面自治系统在周期扰动下同宿轨的保持性问题,到上个世纪80年代,美国著名数学家Hale提出人们应该关注由退化同宿轨引起的动力性态。本项目沿着这个问题进行研究,主要考虑了带退化同宿轨或异宿轨的自治系统,在一般小扰动或周期扰动下的动力性态,比如多重同宿轨分叉、多重同宿不变流形的存在性等,本项目主要寻找到一些充分或必要条件,使得扰动系统出现分叉现象,还构造出一维扰动系统,使得这些现象得以实现;还研究了在顺从群作用下的序列拓扑熵测度熵与拓扑熵测度熵的若干性质以及它们的关系;在序列熵为无穷时,研究了序列均值维数、序列度量均值维数等问题。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
3

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
4

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

DOI:10.7606/j.issn.1000-7601.2022.03.25
发表时间:2022
5

针灸治疗胃食管反流病的研究进展

针灸治疗胃食管反流病的研究进展

DOI:
发表时间:2022

朱长荣的其他基金

批准号:10826049
批准年份:2008
资助金额:3.00
项目类别:数学天元基金项目
批准号:11171360
批准年份:2011
资助金额:40.00
项目类别:面上项目
批准号:10601071
批准年份:2006
资助金额:10.00
项目类别:青年科学基金项目

相似国自然基金

1

奇异微分方程的同宿轨与异宿轨研究

批准号:11201270
批准年份:2012
负责人:孙俊涛
学科分类:A0301
资助金额:23.00
项目类别:青年科学基金项目
2

退化同宿轨的保持性及分岔

批准号:10826049
批准年份:2008
负责人:朱长荣
学科分类:A0301
资助金额:3.00
项目类别:数学天元基金项目
3

关于同宿轨与异宿轨存在性及混沌性态判定的某些新方法

批准号:11071262
批准年份:2010
负责人:赵怡
学科分类:A0301
资助金额:31.00
项目类别:面上项目
4

脉冲微分方程与包含的同宿、异宿轨及相关问题研究

批准号:11261020
批准年份:2012
负责人:何小飞
学科分类:A0302
资助金额:45.00
项目类别:地区科学基金项目