Due to the aerodynamic heating produced during the flight, hypersonic vehicle is prone to appear the elastic vibration and deformation, the coupling effects between elastic structure, aerodynamic forces, and propulsion system result in a non-minimum phase characteristic, i.e., zero dynamics are unstable. The comprehensive effect of elastic vibration and unstable zero dynamics is a risk of security and stability for hypersonic vehicle. Considering the working conditions of scramjet engine, the project intends to suppress elastic structure vibration and unstable zero dynamics actively, elastic active suppression control strategies for hypersonic vehicle under the circumstances of states constrained are proposed to solve elastic suppression and flight states constrained problem. Firstly, the coupling mechanism between elastic vibration and control system is studied, the stability conditions of elastic states are determined, and the adaptive notch filter method is proposed to estimate and suppress the elastic modes. Secondly, by the qualitative analysis as well as the quantitative description of the changes of unstable zero dynamics, the stable conditions of elastic unstable zero dynamics are determined. Dynamic compensator design method is studied, and actively inhibiting the unstable dynamics is achieved. Finally, considering the flight sates suffer constant and time-varying constraints, respectively. The appropriate barrier Lyapunov functions are constructed to design fixed time controller based on command filter technology such that the corresponding constraints can be handled. The elastic active suppression is accomplished as well as the integrated adaptive filter and dynamic compensator. With all the work above, all-digital simulation platform is developed for system performance evaluation in order to verify the effectiveness of the proposed methods.
高超声速飞行器飞行中产生的气动热引起机身弹性振动和变形,弹性结构、气动力及推进系统之间的耦合导致非最小相位特性即零动态是不稳定的,弹性与不稳定零动态是飞行器安全稳定飞行的隐患。考虑超燃冲压发动机的工作要求,项目拟从主动抑制弹性振动与不稳定零动态出发,提出状态受限条件下弹性主动抑制的控制策略。首先,研究弹性振动与控制系统之间的耦合机理,确定弹性状态的稳定条件,提出自适应陷波滤波方法对弹性模态进行估计与抑制。其次,通过定性分析,定量描述不稳定零动态变化规律,确定稳定弹性零动态的条件,研究动态补偿器设计方法,实现主动抑制弹性不稳定零动态。再次,考虑飞行状态常值、时变两种受限情况,基于指令滤波技术构造适当的障碍Lyapunov函数进行固定时间控制器设计,达到处理状态受限的目的,综合自适应滤波器、动态补偿器实现主动抑制弹性。最后,建立系统性能评价体系,完善全数字仿真平台,验证控制方法的有效性。
随着着自主控制与人工智能等前沿技术迅速发展,集快速机动、人员救援、情报监视和侦察打击为一体的飞行器智能自主控制理论与关键技术,逐成为众多研究学者关注的热点问题,研究与之相关的科学问题具有前瞻性、战略性和带动性。项目针对弹性高超声速飞行器的鲁棒综合控制律设计,飞行器状态受限轨迹跟踪,飞行器通信资源节约条件下的分布式编队问题进行了研究。首先,为提高弹性高超声速飞行器的安全性和可靠性,针对弹性影响下的飞行器的执行机构失效故障问题,进行了自适应滑模主动容错综合控制方法的研究,并对固定时间控制器/观测器的综合设计进行了探讨。其次,为了降低飞行过程中的超调量,研究了状态受限情况下的轨迹跟踪问题。构造非对称障碍Lyapunov函数处理飞行器状态受限条件,设计自适应滑模控制器对飞行轨迹进行时变非对称约束,确保飞行器有限时间内跟踪期望轨迹。再次,为了降低轨迹跟踪和姿态稳定控制的能量损耗,研究了事件驱动滑模控制设计方法,使得控制器只需要在某些离散的触发时刻进行信息传输和控制律更新,同时保持姿态稳定。并基于Lyapunov第二法分析了稳定性,通过严格数学推导证明了无Zeno现象。最后,研究了多飞行器自触发分布式编队控制。基于图论和一致性理论,设计自触发滑模控制策略,无需连续监测触发条件,仅根据当前时刻的采样状态确定下一个采样时刻,在保证系统稳定的同时,有效减少了资源传输量和控制律的更新次数。数学推导得出触发间隔的下限,以确保不存在连续触发行为。项目共计发表高水平论文15篇,申请发明专利3项,培养研究生7名。项目研究结果将为实际通信环境下飞行器控制器设计提供重要的技术支持,对推动飞行器控制理论在实际工程中的应用是一次有益的探索。
{{i.achievement_title}}
数据更新时间:2023-05-31
Synchronization control of neural networks with state-dependent coefficient matrices
伴有轻度认知障碍的帕金森病~(18)F-FDG PET的统计参数图分析
拥堵路网交通流均衡分配模型
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
脉冲式干扰下高超声速飞行器的有限时间状态受限控制
执行器受限条件下的高超声速飞行器容错预测控制策略研究
高超声速飞行器气动/热弹性研究
高超声速飞行器弹性影响分析与稳定跟踪控制策略研究