Hydrodynamic equations are important research areas for partial differential equations. It is not only rich in the theoretical research of mathematics, but aslo has a deep backgroud in physics. In this project, we mainly study one case about the boundary-value problem of the three dimensional potential equation. We consider the wellposedness of the solution for the supersonic flow past a strong bend or corner. Here the incoming flow is a perturbation of a constant flow. The problem is described in the classical literature 《Supersonic flow and shock waves》(P. 273-278) in hydrodynamics authored by R. Courant and K. O. Friedrichs. If the bend (or corner) is sufficiently strong, then there will appear a complete rarefaction wave (or a complete centered rarefaction wave), i. e. there is a vacuum region between the flow and the bend (or the corner). We will prove the wellposedness and especially the local stability.
流体力学方程是偏微分方程中的重要研究领域,不但富有数学理论研究价值,而且具有非常强的物理背景。本项目主要研究一类三维位势流方程的边值问题,即考虑超音速位势流流经一个大弯曲或者拐角时解的适定性。这里来流为一个常数来流的扰动。问题描述于R. Courant和K. O. Friedrichs流体动力学方面的经典著作《Supersonic flow and shock waves》(P. 273-278)。当弯曲(或者拐角)角度充分大时,当超音速来流流经拐角时,将会产生一个完全疏散的疏散波(或者中心疏散波),即在流体和弯曲(或者拐角)之间将会产生真空区域,我们将证明解的适定性,特别是局部稳定性。
本项目中,我们主要考虑在临界Lp型Besov空间中可压有粘的MHD方程则的全局适定性和低Mach数极限。更精确地说,我们证明了在等熵情形下,当Mach数趋于0时,可压MHD方程的解在临界Lp框架下会收敛到不可压MHD方程的解。此外,我们还得到了收敛的速率。
{{i.achievement_title}}
数据更新时间:2023-05-31
特斯拉涡轮机运行性能研究综述
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
城市轨道交通车站火灾情况下客流疏散能力评价
多频数据的Helmholtz方程位势反问题
带位势的非线性椭圆方程及其相关的退化椭圆问题
在线排序问题研究中的位势理论
高维可压Navier-Stokes方程的真空问题