Electro-mechanical transmission systems are multi-physics and multi-dimensional dynamic systems coupling across mechanical, electrical, magnetic and force physical fields. Under the excitation of multi-source disturbance, the vibrations of rotor interface are exceedingly complicated, which significantly impacts the positioning of vibration source and thus hinders the way of performance enhancement of transmission systems. In regarding of the aforementioned concerns, this project focuses on 2 essential scientific topics. The first topic is multi-dimensional and multi-physics coupling mechanism of the rotor interface dynamics. The other one is active control of coupled vibration in transmission systems with multiple constraints. The multi-dimensional coupling nonlinear vibration model is constructed by using Lagrange-Maxell theory. Henceforth, both the mechanical coupling mechanism among multiple physics fields and the evolution of the coupled dynamics could be explicitly revealed according to this model. To define the coupling effects on the instability mechanism in multi-dimensional and multi-physics systems, the influences of coupling parameters and complex boundary conditions on the dynamic stability at the vicinity of singular points are discussed, on the basis of a cascade analysis method routing along the following order, coupled vibration model set up - dynamic characteristics analysis - dynamic stability control. For the purpose of active vibration control and robustness enhancement, electro-mechanical transmission systems operating in multi-dimensional and multi-physics fields, with multi-source perturbation and parameter uncertainty constraints are investigated. The project investigates the active control method based on multi-objective and multi-parameter optimization by using motor control system, as well as analyzes the spatial distribution surface of coupling parameters that locates within the stability margin which provides adequate load capacity and satisfactory anti-disturbance capability at the same time. The research is of great theoretical and practical value for optimization design, stability margin and controllability of the electromechanical transmission system.
车用机电复合传动系统涉及机、电、磁、力等多场与多维动态过程,转子界面在多源扰动作用下使得振动异常复杂,严重影响振源定位和制约传动系统的性能提升。该项目围绕“机电复合传动系统转子界面多维多场耦合机理”与“多约束条件下传动系统耦合振动主动调控”2个基础科学问题展开。采用Lagrange-Maxell理论构建多维多场耦合非线性振动模型,探究转子界面多维多场耦合的力学机理与耦合动力学行为演变规律;基于耦合振动模型-动力学特性-稳定性控制的多层次分析方法探讨耦合参数与复杂边界条件对奇异点动态稳定性的影响,明确多维多场耦合失稳机制;在多源扰动与参数不确定性约束条件下,以机电复合传动多维多场耦合作用下主动减振与系统鲁棒性为目标,探索利用电机系统进行多目标、多参数优化主动调控方法,获取满足稳定裕度、载荷能力和抗扰动要求的耦合参数空间分布曲面。该研究对于车用机电复合传动系统的优化设计、稳定性和可控性具有重要
车用机电复合传动系统涉及机、电、磁、力等多场与多维动态过程,转子界面在多源扰动作用下使得振动异常复杂,严重影响振源定位和制约传动系统的性能提升。该项目围绕“机电复合传动系统转子界面多维多场耦合机理”与“多约束条件下传动系统耦合振动主动调控”2个基础科学问题展开。耦合电机的电压方程、磁链方程、转子运动方程,构建了多维度多重非线性耦合动力学模型,分析了传动系统多重耦合对转子界面刚度属性的影响,通过负刚度效应揭示了机电耦合的力学机理;分析转子界面多重耦合动力学固有频率特征随耦合参数的变化规律,提出了车用机电复合传动系统多维耦合非线性振动分析的耦合特征参数体系;采用平均法求解了非线性耦合动力学模型的近似解析解,并通过Runge Kutta数值求解方法进行对比,分析转子界面的耦合共振特性与动力学行为随特征参数的演变规律,确定了引起多维度多重耦合振动失稳运动的参数集与失稳类型;采用Melnikov理论对多维度多重耦合振动的失稳问题进行解析计算,求得了失稳参数的稳定参数界面,揭示了转子界面多重耦合振动失稳机理,针对机电复合传动失稳运动的机、电、磁参数集,提出了机电复合传动的稳定运行空间边界域;研究了利用电机系统对发动机等机械部件进行主动减振的控制方法,提出了一种多时滞主动减振算法,能有效实现机电复合传动系统的主动减振;探讨发动机主动减振控制与多重耦合稳定性控制的耦合关系,根据非线性动力学演变规律与失稳震荡规律确定了机、电、磁优化设计参数。该研究对于车用机电复合传动系统的优化设计、稳定性和可控性具有重要指导意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
多场耦合作用下机电复合传动模式切换失稳机理与多动力转矩协调控制研究
燃气轮机转子系统在多场耦合作用下的非线性振动与控制
机电复合传动多功率流耦合作用机制与最优协同调控研究
多场耦合作用下IPMC材料界面结构对其机电性能的影响机理