The L^2-constraint variational theory has wide applications in the fields of quantum many-body systems, nonlinear optics, mechanics and so on, which has attracted lots of experts to do the related researches over the past few years. Following the further investigations of Bose-Einstein condensation (BEC) and Kirchhoff models, there appear many challenging and difficult mathematics problems in studying the related L^2-constraint variational problems. By making full use of the nonlinear functional analysis, the present project is focussed on the following two classes of problems: (1) We study constraint minimizers of the L^2-constraint variational problems modeling two-component BEC in bounded domains, including the existence and non-existence, blow-up behavior, and the local uniqueness as well. (2) We analyze the L^2-constraint variational problems of Kirchhoff type involving two L^2-critical exponents, for which we investigate the existence, mass concentration and uniqueness of minimizers. Studying deeply the above L^2-constraint variational problems cannot only provide theoretical interpretations of the relevant physical experiments, but also contribute to enriching the theory and applications of nonlinear functional analysis.
L^2-约束变分理论在量子多体系统、非线性光学、力学等领域有着非常广泛的应用背景,近年来吸引了大量的国内外专家开展了相关的理论研究。特别是随着玻色-爱因斯坦凝聚(BEC)现象、Kirchhoff模型的深入探讨,相关的L^2-约束变分问题的研究中涌现了许多具有挑战性的数学难题。本项目将充分应用非线性泛函分析理论与方法,重点考虑如下两类问题: (1)研究有界区域上两组分BEC中的L^2-约束变分问题,包括泛函极小的存在性与非存在性、爆破行为及局部唯一性等;(2)分析Kirchhoff型L^2-约束泛函问题,包括具有两个L^2-临界指标情形下极小元的存在性、质量集中行为、唯一性等。上述两类变分问题的深入研究,不仅可以为相关物理现象的解释提供理论上的支撑,而且有助于丰富非线性泛函分析的理论与应用。
质量约束变分理论在生态学系统中基尔霍夫问题以及物理实验中的BEC问题等领域有着非常广泛的应用背景,近年来吸引了大量的国内外专家开展了相关的理论研究。本项目研究了玻色-爱因斯坦凝聚(BEC)问题、Kirchhoff模型相关的L^2-约束变分问题的泛函极小的存在性与非存在性、爆破行为及局部唯一性等。这两类变分问题的深入研究,不仅可以为相关物理现象的解释提供理论上的支撑,而且有助于丰富非线性泛函分析的理论与应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
转录组与代谢联合解析红花槭叶片中青素苷变化机制
两类分数阶非局部变分问题研究
量子场论中的两类变分问题
变分方法应用中的两类核心问题研究
约束条件下的多目标变分问题