CO abnormal emission of mined out area often leads to a significant increase in the amount of CO emission and even exceeds the limit, which hinders the normal safety production. However, there are only several researches towards the existing hidden danger mentioned above. By taking mine out area CO abnormal emission characteristics and dynamic prediction method study as the main line, adopting theoretical analysis, numerical calculation, test and site application as the study method, this project studied the internal and external features of mine out area CO abnormal emission under different influence and effect in a multi-mechanism and multi-scale manner, and established the forming and diffusion rule model, extracted the similar characteristic of mined out area CO abnormal emission and analyzed various gob CO abnormal emission mode; made dynamic simulation of the CO emission and diffusion features under multiple effects, clustered and identified the underground mined out area CO abnormal emission characteristics, adopted the mean variance or a confidence interval threshold method to put forward the CO emission dynamic warning threshold setting method; studied the trend link characteristic between CO and other coal self-combustion characteristic parameters, established CO warning coal self-combustion classification model in combination with multi-parameter and put into application; based on time series prediction method for dynamic prediction of goaf CO emission dynamics and warning coal self-combustion. The research results have significant meaning to improve the accuracy of spontaneous combustion prediction and ensure the normal safety production of coal mine enterprises.
采空区CO异常涌出往往导致CO涌出量显著增加甚至超限,妨碍正常的安全生产。然而对上述客观存在重大隐患实际研究成果较少,本项目以煤矿采空区CO异常涌出表征和动态预警方法研究为主线,采用理论分析、数值计算、实验和现场应用的方法,多机制、跨尺度研究不同影响效应影响下的采空区CO涌出内在与外在特点,建立生成及扩散规律模型,提取采空区CO 异常涌出的相似特征,分类各种采空区CO异常涌出模式;动态模拟多重效应叠加下CO涌出和扩散特点,聚类并识别井下采空区CO异常涌出表征,采用均值方差或置信区间阈值法提出CO涌出动态预警阈值设定方法;研究CO及其他煤自燃表征参数之间的趋势关联特性,融合多参量建立CO预警煤炭自燃分级模型并应用;基于时间序列预测方法动态预测采空区CO涌出动态规律,预警煤炭自燃。研究成果对提高自燃预报准确性、保证煤矿企业正常安全生产具有十分重要的意义。
采空区CO异常涌出往往导致CO涌出量显著增加甚至超限,妨碍正常的安全生产。然而对上述客观存在重大隐患实际研究成果较少。本项目通过使用自主搭建和改进的实验装置,总结得到煤在机械作用力产生CO的方式主要有煤内部的CO解吸(P-CO)、煤氧复合(O-CO)和煤的结构破坏分解(S-CO)3种;并通过建立数学物理模型,理论推导公式,分析得到叠加效应下CO相关煤自燃表征参数趋势关联特征,结果表明碳氧化物比率不受新鲜风流、注氮作用和瓦斯涌出的影响,而CO受到新鲜风流和注氮作用的影响,不受瓦斯涌出的影响;利用MATLAB对采集的指标气体浓度时间序列进行小波分解,分离出高频分量和低频分量,从高频分量和低频分量分析得到数据的随机性、周期性、趋势性等数学特征,结合程序升温实验数据,确定煤炭自燃的起始温度和3个特征温度,根据确定的4个温度点所对应的碳氧化物比率建立煤炭自燃四级分级预警方法,同时利用对采空区和上隅角的CO浓度及碳氧化物比率的关联性分析,保证预警结果的可靠性,并对煤炭自燃四级预警进行补充和优化。研究成果对提高自燃预报准确性、保证煤矿企业正常安全生产具有十分重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
不确定失效阈值影响下考虑设备剩余寿命预测信息的最优替换策略
基于EMD与小波阈值的爆破震动信号去噪方法
精子相关抗原 6 基因以非 P53 依赖方式促进 TRAIL 诱导的骨髓增生异常综合征 细胞凋亡
基于深度学习的宫颈癌异常细胞快速检测方法
采空区煤自燃多场叠加作用机制及影响效应研究
抽放条件下采空区流场的叠加方法研究
水成膜胶体泡沫形成机制及抑制采空区瓦斯涌出特性研究
复杂因素影响下矿井CO气体来源辨识及涌出规律研究