Due to its biodegradation and mechanical properties similar to natural bones, magnesium is potentially a kind of excellent implant biomaterials for orthopedic applications. It has also been shown that magnesium ions can promote the grownth of bone tissues. However, magnesium corroses too fast inside living body so that its mechanical properties deteriorate quickly, losing its fixiation or supporting functions. Moreover, when the corrosion-induced hydrogen-gas generation is much faster than the body adsorption, bubbols and alkalization can locally occur inside the tissue. Coating its surface with a layer of biodegradable polymer can lead to its long-term corrosion resistance, but also prevent the immediate release of growth-stimulating magnesium ions few weeks after orthopedic operation. Therefore, we propose to add a proper kind and amount of magnesium salts (or other biofunctional salts) into the polymer coating and use its dissolution to controllably release magnesium ions and its dissolution-generated inter-connected channels to control the corrosion of the underneath magnesium materials. We will control the formation and morphology of the magnesium salt's inter-connected continueous phase formed during the coating formation by choosing the concentration of magnesium salt, solvent and coating conditions (e.g., temperature); use dielectric relaxation spectrum to find the magnesium salt's critical percolation concentration for the formation of the magnesium salt's continueous phase and measure the dissolution rate of magnesium salts and the corrosion rate of the underneath magnesium material in a simulated body fluid; then search the semi-quantitative and quantitative relations between the dissolution/corrosion rates and the concentration of magnesium salt, the casting conditions, the film thickness as well as the morphology of the magnesium salt's phase; prepare the coated magnesium alloy applied for various orthopedic operations and start preliminary animal experiments.
因其可降解性及与天然骨相仿的力学性能,降解产生的镁离子还可刺激新生骨组织的生长,镁合金成为一种优良的植入性骨科材料。但是镁在体内腐蚀过快,其力学强度迅速劣化,失去固定和支撑作用,而且镁的腐蚀反应还可导致组织中的鼓泡和有害的局部碱性化。在镁合金表面涂覆可降解高聚合物涂层可提高其长期耐蚀性,却无法在术后数周内提供刺激骨生长的镁离子。因此,我们提出在镁合金的聚乳酸涂膜中混入适当的镁盐(或其它有生物功能的盐),利用镁盐溶释可控地提供镁离子并利用复合涂膜中高于逾渗阈值含量的镁盐溶释后形成的贯穿孔道调节膜下镁合金的腐蚀速率。我们将通过选择镁盐含量、溶剂及成膜条件(如温度)调控成膜过程中镁盐连续相的形成及其形貌,并利用介电松弛谱找到形成镁盐逾渗结构的临界浓度和监控膜中镁盐在模拟体液环境中的溶释和膜下镁合金的腐蚀过程,从而研究溶释和腐蚀速率与制膜条件及逾渗结构之间的定量关系,研制适用于不同要求的骨科材料。
骨骼是人体的支架,担负着支持、保护、承重、造血、贮钙和代谢等功能,是人体的重要组织器官。临床上由于外伤、肿瘤、感染等造成的骨缺损和骨质疏松,骨组织无法自我修复和再生时,往往需要采用外科手术进行治疗。.目前常规采用的骨科金属材料中有不锈钢、钛或钴铬合金。这些金属材料由于不能体内生物降解或溶释过程中释放有毒金属离子而不能满足生物医疗应用。人们很早就注意到镁金属作为植入金属材料具有广阔的前景,金属镁的强度可满足骨科材料力学要求,密度和弹性模量与天然骨十分相仿,可生物降解且降解后的镁离子可以刺激新生骨组织生长。但是由于镁的化学性质活泼,其在生理电解质溶液中的抗腐蚀能力差,一般在较短的时间内就会降解和丧失力学性能,不能满足术后骨骼生长过程中对植入材料力学性能的要求。.本项目中,我们首先在镁金属表面成功制备了数种不同的化学转化膜,经一系列标准的金属耐蚀性能测试,我们挑选中耐蚀性较好的氟化和锰系磷化液处理转化膜,并用浸涂提拉法对金属表面进行聚乳酸涂覆,对聚乳酸和金属的结合性以及样品的耐蚀性进行了测试和分析。实验结果表明,表面转化处理并涂覆聚乳酸的镁试样的耐蚀性能得到了显著提高。我们将改性和防护镁金属用于SD大鼠骨缺损修复、以及以髓内针形式分别用于大鼠、小鼠的股骨骨折固定,结果表明镁金属/合金可以有效帮助骨愈合,防护样品可以维持形状完整和力学支撑达6周(小鼠)和12周(大鼠)。.此外,我们成功制得了多种无机镁盐(醋酸镁;部分水解乙醇镁;镁磷氧化物)与可降解高聚物(聚乳酸或聚乳酸/聚己内酯共混物)的复合涂膜,既可以生物降解、又具有生物活性的复合物材料。我们利用介电松弛谱完成了高聚物中无机盐分布和溶出的定量分析。SD大鼠的活体植入实验表明,聚乳酸-镁盐复合植入物无生物毒性、无炎症反应,具有良好的组织相容性,复合膜在体内的降解速率高于聚乳酸膜。该复合膜将替代聚乳酸用于金属镁的防腐涂层,以期获得既可在术后短期内提供可控释放的生物活性镁盐、又可在中长期保护镁金属不受腐蚀且维持力学性能,而且最终可以完全降解的复合生物材料,为骨科生物医学临床应用奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于二维材料的自旋-轨道矩研究进展
双吸离心泵压力脉动特性数值模拟及试验研究
氟化物熔盐在石墨中的逾渗机制研究
金属复合衰减材料的弱负介电调控与双逾渗行为
新型低损耗铌酸铋镁介电可调薄膜材料研究
用镁盐和造纸草浆黑液为原料制备烟气脱硫剂的研究