关于有向图的谱半径和子图存在性的研究

基本信息
批准号:11401211
项目类别:青年科学基金项目
资助金额:22.00
负责人:林辉球
学科分类:
依托单位:华东理工大学
批准年份:2014
结题年份:2017
起止时间:2015-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:张海良,朱焱,卢俊杰
关键词:
禁用子图CH谱半径猜想有向图
结项摘要

Caccetta and Haggkvist in 1978 conjectured that every digraph on n vertives with minimum outdegree at least n/r has a directed cycle of length at most r. Later, in 2005, Charbit posed a stronger conjecture, that is, every digraph on n vertives with spcetral radius at least n/r has a directed cycle of length at most r. These two conjectures are still open and many related problems were posed by many reseachers. In this project, we consider three of them: Firstly, does a digraph on n vertives with minimum outdegree and indegree at least n/r has a directed triangle; Secondly, giving a spectral radius conditions, such that the digraph contains a (directed) cycle of length k or a (directed) path of length k? Thirdly, Finding an orientation, such that a simple connected graph under this orientation attains the maximum spectral radius? Moreover, we also consider several related problems of the three problems mentioned above, such as, the existence of the subgraph and the girth of digraphs and so on. This project will use synthetically the methods of graph theory, matrix theory and Regular Lemma, adopt the research scheme combining theory derivation and computer verification, and exploit and enrich the research tools of graph theory in order to promote the above problems solved sucessfully.

1978年,Caccetta 和 Haggkvist 猜想出度不小于n/r的有向图包含长度不超过 r 的有向圈,其中n为图的顶点数,r 为正整数。在2005年,Charbit 提出了比 C-H 猜想更强的一个猜想:谱半径不小于n/r的有向图含有圈长不超过r的有向圈。这两个猜想至今未被解决且引申出诸多研究课题,本项目关注如下三个问题,其一,出度和入度均不小于n/3的有向图是否包含有向三角形?其二,给出有向图含有k-长(有向)圈或k-长(有向)路的谱半径条件?其三,在什么样的定向方式下,使得一个简单连通图的谱半径达到最大?这三个问题均是可扩展的,对它们的深入研究将引申出诸多后继课题,比如子图存在性问题,有向图的围长等问题。本项目将综合运用图论、矩阵论以及 Regular Lemma 等研究方法,采用理论推导和计算机验证相结合的研究方案,挖掘和丰富图论问题的研究工具,以期推动上述问题的顺利解决。

项目摘要

图谱理论主要研究图的相关矩阵的特征值和特征向量,应用代数理论来研究图的拓扑性质,以及应用图的拓扑结构来研究图的谱性质。在本项目中,我们将对以下两方面内容展开研究。第一,有向图的谱半径与结构参数之间的关系;第二,关于图的距离特征值、子图存在和结构参数。特别地,我们深入研究了距离谱和图的结构参数相关问题,解决了本领域的一些猜想和公开问题,包括:1. 解决了Aouchiche和Hansen[Distance spectra of graphs: A survey, Linear Algebra Appl.]提出的关于距离最小根和直径的猜想。2. 解决了Aouchiche和Hansen[Proximity, remoteness and distance eigenvalues of a graph, Discrete Appl. Math.]提出的关于图的remoteness和图的距离特征值的猜想。3. 解决了Fajtlowicz[Written on the wall: conjectures derived on the basis of the program Galatea Gabriella Graffiti]提出的关于图的距离特征值与图中三角形个数的猜想。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example

Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example

DOI:10.1016/j.eiar.2021.106623
发表时间:2021
3

An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function

An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function

DOI:10.1080/15476286.2017.1377868.
发表时间:2017
4

Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations

Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations

DOI:10.1007/s40820-020-0386-6
发表时间:2020
5

双吸离心泵压力脉动特性数值模拟及试验研究

双吸离心泵压力脉动特性数值模拟及试验研究

DOI:10.13465/j.cnki.jvs.2020.19.016
发表时间:2020

林辉球的其他基金

批准号:11771141
批准年份:2017
资助金额:48.00
项目类别:面上项目

相似国自然基金

1

有向图与符号有向图的谱理论研究

批准号:11871398
批准年份:2018
负责人:王力工
学科分类:A0408
资助金额:52.00
项目类别:面上项目
2

图与有向图中点不交子图存在性问题的研究

批准号:11901246
批准年份:2019
负责人:江素云
学科分类:A0409
资助金额:25.00
项目类别:青年科学基金项目
3

关于线图和有向图圈结构若干问题的研究

批准号:11301371
批准年份:2013
负责人:杨卫华
学科分类:A0409
资助金额:23.00
项目类别:青年科学基金项目
4

简单图和有向图的哈米尔顿问题

批准号:18670558
批准年份:1986
负责人:施容华
学科分类:A0409
资助金额:0.35
项目类别:面上项目