关于线图和有向图圈结构若干问题的研究

基本信息
批准号:11301371
项目类别:青年科学基金项目
资助金额:23.00
负责人:杨卫华
学科分类:
依托单位:太原理工大学
批准年份:2013
结题年份:2016
起止时间:2014-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:陈美润,何伟骅,白延东,孙强
关键词:
线图有向图的围长超欧拉图图的连通性哈密尔顿圈
结项摘要

Thomassen in 1986 conjectured that every 4-connetced line graph is hamiltonian, and Caccetta and Haggkvist in 1978 conjectured that every digraph on n vertives with minimum outdegree at least n/r has a directed cycle of length at most r. The two conjectures are still open and many related problems were posed by reseachers. In this project we consider two of them: what is the smallest integer k such that a 3-connected and essentially k-connected line graph is hamiltonian, and does a digraph on n vertives with minimum outdegree and indegree at least n/r has a directed triangle. Moreover, we also consider several related problems of the two problems mentioned above, such as, the circumferences in the line graphs and claw-free graphs, pancyclicity of line graphs, and the girth of digraphs and so on. The project focus on topics on hamiltonicity of line graphs, supereulerian graphs, connectivity of graphs and cycles in digraphs. Thus, the methods such as the closure method of line graphs, the reduction method of supereulerian graphs, atom theory on the connectivity of graphs, and the well-known Regularity Lemma will be used.

Thomassen 1986年猜想"4-连通线图是哈密尔顿的";Caccetta和Haggkvist 1978年猜想"出度不小于n/r的有向图包含长度不超过r的有向圈",其中n为图的顶点数,r为正整数。这两个猜测至今未被解决且引申出诸多研究课题,本项目关注如下两个问题,其一,能够保证3-连通线图是哈密尔顿的最小的本质连通度是多少?其二,出度和入度均不小于n/3时的有向图是否包含有向三角形?这两个问题均是可扩展的,对它们的深入研究将引申出诸多后继课题,比如线图的哈密尔顿连通性,线图的周长,线图泛圈性和子泛圈性,以及有向图的围长等问题。上述问题一及其相关问题是本项目的研究核心。 项目课题主要涉及图的哈密尔顿性,超欧拉性,连通性,有向图的圈等,所使用的主要图论方法为线图闭包方法,Catlin的收缩方法,图连通性的原子理论,以及 Regularity Lemma等。

项目摘要

Thomassen 1986年猜想“4-连通线图是哈密尔顿的”;Caccetta和Haggkvist 1978年猜想“出度不小于n/r的有向图包含长度不超过r的有向圈”,其中n为图的顶点数,r为正整数。这两个猜测至今未决,同时也引申出来诸多研究课题。项目组对预设研究问题进行了系统研究,在有向图和线图圈结构研究上取得了较丰富的进步;其中,基于边度和条件考虑Thomassen猜想,基于Chavatal-Erdos条件考虑了图的欧拉性,基于最小度条件考虑线图生成子图的哈密尔顿性,探索了有向图上的Caccetta-Haggkvist猜想和特殊有向图的圈结构;研究团队建设取得了一定进步,在项目研究的基础上申报国家自然科学基金面上项目一项;在本项目资助下学术交流频繁,其中主办学术会议2场。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

农超对接模式中利益分配问题研究

农超对接模式中利益分配问题研究

DOI:10.16517/j.cnki.cn12-1034/f.2015.03.030
发表时间:2015
3

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020
4

基于协同表示的图嵌入鉴别分析在人脸识别中的应用

基于协同表示的图嵌入鉴别分析在人脸识别中的应用

DOI:10.3724/sp.j.1089.2022.19009
发表时间:2022
5

基于LBS的移动定向优惠券策略

基于LBS的移动定向优惠券策略

DOI:10.3969/j.issn.1005-2542.2020.02.009
发表时间:2020

杨卫华的其他基金

相似国自然基金

1

图的超欧拉性与线图和稠密图的圈结构若干问题研究

批准号:11671296
批准年份:2016
负责人:杨卫华
学科分类:A0409
资助金额:50.00
项目类别:面上项目
2

关于有向图的谱半径和子图存在性的研究

批准号:11401211
批准年份:2014
负责人:林辉球
学科分类:A0409
资助金额:22.00
项目类别:青年科学基金项目
3

有向图的泛弧和点不相交圈相关问题的研究

批准号:11401455
批准年份:2014
负责人:邹青松
学科分类:A0409
资助金额:22.00
项目类别:青年科学基金项目
4

有向图与符号有向图的谱理论研究

批准号:11871398
批准年份:2018
负责人:王力工
学科分类:A0408
资助金额:52.00
项目类别:面上项目