巴拿赫空间结构理论及其在最优化中的应用

基本信息
批准号:19971023
项目类别:面上项目
资助金额:8.50
负责人:陈述涛
学科分类:
依托单位:哈尔滨师范大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:王玉文,宋文,王辉
关键词:
Banach空间向量优化算子广义逆
结项摘要

Abstract:This research program belongs to the field of the theory of Banach.spaces in functional analysis and its applications in the theory of optimization. The geometry of Banach spaces is an important branch of functional analysis, and vector.optimization is an area where functional analysis, specially, the geometry of Banach spaces plays an important role. In this research program, we mainly study the geometric structure and topological structure of general Banach spaces and some special Banach spaces such as Orlicz spaces, Orlicz-Soblev spaces, and K.ther spaces Using created special technique and methods; we gave the charaterizations of theweak normal structure of Orlicz spaces, isometric copies of 1 l and l∞ , extreme points, strictly convex and uniformly convex properties of Orlicz-Soblev spaces, and H-points of K.ther-Bochner spaces. With the help of the dual mapping of Banach spaces, we generalizes the famous Riesz orthogonal decomposition theorem in Hilbert spaces to general Banach spaces, which make us to give a criterion of orthogonal complementable closed subspaces introduced by James. Consequently, this provides a new criterion of Banach spaces to be isomorphic with Hilbert space. Using the renormed theorem of Banach spaces, we proved that a bounded linear operator in Banach spaces to be a compact linear operator if and only if it can be approximated uniformly by a bounded homogeneous operator. This result displays the essence of counter example given by Enflo. Using the geometric properties, we study systemly Moore-Penrose metric generalized inverse and Tseng metric generalized inverse of linear operator, and single-valued homogeneous selections of set-valued metric generalized inverse, and criteria of its existence, continuity and linear. The result was used to solve non-well.posed problems of partial differential equations and two point boundary problems of ordinary differential equations..Using the topological structure and ordered structure of Banach spaces, we study vector optimization problems and generalized vector equilibrium problems. We discussed the relationships of various proper efficiencies of vector timization, gave out the existence result of generalized vector variational inequalities and vector equilibrium, and proved the arcwise connectedness of efficient point set of a compact.convex set under some conditions. With the help of geometry of Banach spaces, we.provide some characterizations of some remarkable classes of cones, our result give apositive answer to the question proposed by Gong[4].

研究Banach空间的几何与拓扑性质,与不动点相关的一些其他空间性质及子空间同构问题。利用空间的几何和拓扑性质,如凸性、H性质等研究向量最优化问题,有效解集拓扑性质。致跙anach空间上非线性最优化控制问题。进一步揭示出空间的本质属性为解决向量最优化妥钣趴刂浦械哪承┪侍馓岢龈行Х椒ā

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
2

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

DOI:10.11821/dlyj020190689
发表时间:2020
3

基于LASSO-SVMR模型城市生活需水量的预测

基于LASSO-SVMR模型城市生活需水量的预测

DOI:10.19679/j.cnki.cjjsjj.2019.0538
发表时间:2019
4

基于分形维数和支持向量机的串联电弧故障诊断方法

基于分形维数和支持向量机的串联电弧故障诊断方法

DOI:
发表时间:2016
5

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021

陈述涛的其他基金

批准号:19471019
批准年份:1994
资助金额:2.80
项目类别:面上项目
批准号:10471032
批准年份:2004
资助金额:20.00
项目类别:面上项目
批准号:19071026
批准年份:1990
资助金额:0.80
项目类别:面上项目
批准号:18670539
批准年份:1986
资助金额:0.30
项目类别:面上项目

相似国自然基金

1

巴拿赫空间结构理论与应用

批准号:19471019
批准年份:1994
负责人:陈述涛
学科分类:A0208
资助金额:2.80
项目类别:面上项目
2

巴拿赫空间结构和算子理论

批准号:10771034
批准年份:2007
负责人:钟怀杰
学科分类:A0208
资助金额:24.00
项目类别:面上项目
3

巴拿赫空间理论与应用

批准号:19071026
批准年份:1990
负责人:陈述涛
学科分类:A0301
资助金额:0.80
项目类别:面上项目
4

巴拿赫空间几何理论及应用

批准号:18670539
批准年份:1986
负责人:陈述涛
学科分类:A0208
资助金额:0.30
项目类别:面上项目