Novel bivalent mannopyranosides with tri,none(ethylene glycol) (PEG) spacers linked with glyceryl skeletons and bearing single hydrocarbon chain would be designed and synthesized. At the same time, photomerization in air/water of a single hydrocarbon chain alike bolaamphiphile containing thiol group at the end of single chain would be also designed and synthesized which contain protein resistant headgroups oligo(ethylene glycol). A new type of self-assembed technique would be developed in efficient combination with LB and self-assembed monolayer skills. More specific bivalent binding sites is formed from binary Langmuir monolayers at the air-water interface through lateral reorganization of glycolipids directed by protein in the aqueous solution, and the monolayers would be then polymerized under ultraviolet light irradiation into blue color, followed by covalent immobilization of the binary monolayers on the surface of substrate and preservation of the more specific multivalent binding sites and the protein binding pockets. The color of monolayers polydiacetylenes would be changed from blue to red after recognized by protein. This strategy would generate the stable protein surface imprinting pockets monolayer of controllable assembly and color changes associating with the protein recognition process. Photomerization of the amphiphilic ligands is novelty proposed in this project in order to stabilize glycolipids laterally. Meantime, the more specific multivalent binding sites and the protein binding pockets are to be formed directed by proteins in the subphase with cooperative and multivalent interactions and immobilized finally. This monolayer specific recognition between the protein and the monolayer could be observed with naked eye through color change of the monolayer. This research would provide a probable method to construct the stable protein surface imprinting pockets monolayer of the color changes with the specific recognition, and opens the possibility of surface design of intellectual materials, preparation of biosensors and rapid disease diagnosis.
设计合成新型以三甘醇(PEG)和无甘醇连接、双甘露糖为识别头基、甘油为骨架的单链糖脂分子,同时合成单链中含乙二炔可聚合基团、尾端有巯基的类 Bola 型抗蛋白吸附两亲分子,有机结合 LB 和自组装单层膜两种技术优势,发展一种新的自组装技术。水溶液中蛋白通过多键作用诱导气液界面两亲分子侧向重组形成多重结合位点,光照聚合成蓝色网状 Langmuir 膜,最终共价固定在基片表面保持形成的多重识别位点和印迹空穴,蛋白识别后单层膜由蓝变红,实现糖脂单层蛋白表面印迹空穴单层膜的可控组装和识别变色功能。本项目创新性提出利用配体分子光致聚合效应,侧向稳定功能基元,利用蛋白与功能基元多键作用,形成多重结合位点和印迹空穴,通过共价固定单层膜,同时利用变色响应表述特异性识别,从水相及其界面体系构筑具有多重识别位点和印迹孔穴的特异性识别变色印迹膜,为智能材料表面设计、生物传感器制备、快速疾病诊断开辟一条崭新途径。
设计合成磷脂结构相容的、双头基、双脂链甘油骨架糖脂分子BPEM和BPM及其前躯体DPE、DPG、PG。采用Langmuir膜天平研究气液界面二元组分单分子膜体系的混溶性,优化界面膜组装条件.。通过IRRAS技术原位研究蛋白在气液界面混合单分子膜表面吸附识别的专一性,配合Raman光谱研究印迹蛋白的二级结构的变化以及蛋白吸附对界面单分子膜分子结构(头基作用、脂链构象、取向)的影响,并根据IRRAS偏振光谱数据,定量研究脂链取向变化。借助LB技术,将多重位点结合蛋白的气液界面单分子膜直接构筑在金表面,通过AFM技术,在水溶液中观测蛋白在固液界面单分子膜表面的分子或纳米尺度图案结构。利用示差脉冲伏安法(DPV)、循环伏安法(CV)、电化学阻抗谱(EIS),在水溶液中检测蛋白在固液界面单分子膜表面的蛋白分子印迹结构,同时(准)原位观测蛋白脱附、再吸附,研究固定与流动二元单层蛋白印迹膜的形成与性能比较。SPR技术研究蛋白脱附方式,达到脱附模板蛋白的目的,循环伏安法(CV)实时检测筑蛋白印迹膜的电化学传感性能,并通过U–3010紫外可见吸收光谱仪(Hitachi)测定二元单层膜的聚合变色及识别变色性能。此项研究基于细胞膜的磷脂与磷脂以及蛋白与磷脂之间高度的动态性质,从水溶液界面体系制备蛋白表面印迹单层膜,具有改善大分子物质传递、导向形成印迹位点、直接构筑于生物传感器表面、以及生物友好的水溶液环境等优点,适于从水溶液体系制备不同种类蛋白表面印迹膜。从有机分子设计、复合组装策略方面探索研究,为生物材料制备和人工智能材料设计提供指导性建议。
{{i.achievement_title}}
数据更新时间:2023-05-31
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
基于细粒度词表示的命名实体识别研究
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
蛋白质表面分子印迹自组装膜的构筑及其传感性能
蛋白印迹液晶光致变色膜的构筑及印迹过程可视监测方法建立
单层/少层二维纳米薄片的可控组装与光电性能研究
稀土硫氧化物和含氧硫酸盐高取向透明荧光膜的单层纳米片自组装可控制备及光学性能研究