The development of bio-based polyols in the formation of polyurethane is of great significance for the utilization of renewable resource and the environmental friendliness. In the previous study, bio-based polyols was obtained after continuous epoxidation and ring-opening reaction by using microfluidic technology with soybean oil as raw material. Apart from improved process safety, general problems existed in the field, such as low hydroxyl value, highliquidviscosity and low strength of foam, have been solved in the assistance of microfluidic technology. Thus, the traditional petrochemical polyols can be replaced by this kind of polyols. In this project, reaction process of several vegetable oils will be optimized in the microreactors on the basis of the previous study. Design of the structures towards new bio-based polyols can be conducted by studying on the structure-activity relationship. Besides this, the study of molecular mechanism and transfer rule of material in micro scales will be carried out to guide the adjustment of the flow field parameters, resulting in improved high quality and material performance. Thus, the structure of bio-based polyols will be established accurately and high-valueutilization of vegetable oils will be realized. Regulatory methods can be established through the development of suited flow field structure on the basis of the study of reaction mechanism research and numerical simulation. Based on the optimization of scale effect, the expansion of dimension can be achieved.The engineering application of microfluidic technology can be realized in the combination of equipment manufacturing and integration of automatic control system. This project will extend the biomass industry chain and accelerate the green transformation in polyurethane industry. The success of this project will provide theoretical guidance and technical support for green manufacturing.
生物基聚氨酯多元醇的开发对实现可再生性资源利用及环境友好具有重要意义。项目前期以大豆油为原料,利用微流场技术实现环氧和环氧开环连续化反应,过程安全性提升同时,获得首个可完全替代传统石化多元醇的生物基产品,解决了目前普遍存在的羟值低、粘度大、泡沫强度差及无法完全替代石化多元醇的国际共性问题。项目拟在此基础上,针对多种植物油来源,优化微流场反应流程,总结多元醇构效关系,指导生物基聚氨酯新产品结构设计;研究微尺度下分子行为作用机制和物料传递规律,实现流场参数对多元醇产品指标及材料性能的调控,精确构建产品结构并实现植物油高值利用。通过反应机制研究和数值模拟,设计并开发工艺匹配的流场结构,建立多尺度下流场调控方案,通过尺度效应优化实现尺度有效拓展,经装备制造与系统集成自控,实现微流场技术的工程应用。项目对延伸生物质原料产业链,促进聚氨酯行业绿色升级转型具有重要意义,为绿色制造提供理论指导与技术支持。
在基金委资助下,本项目针对目前生物基聚氨酯多元醇构效关系不明晰、转化过程难以控制和工程放大困难的问题,以各类植物油为原料,构建化合物库,总结多元醇构效关系,指导生物基聚氨酯新产品结构设计;优化微流场反应流程,研究了微尺度下分子行为作用机制和物料传递规律,实现流场参数对多元醇产品指标及材料性能的调控,精确构建产品结构并实现植物油高值利用,开发了3款全新的生物基聚氨酯多元醇产品,可用于胶黏剂和涂料;通过反应机制研究和数值模拟,设计并开发工艺匹配的流场结构,建立多尺度下流场调控方案,通过尺度效应优化实现尺度有效拓展,开发出6中新流场结构,经装备制造与系统集成自控,实现微流场技术的万吨规模工程应用,全流程零排放且产率95%以上。本项目针对生物基聚氨酯多元醇的开发和产业化对实现可再生性资源利用及环境友好具有重要意义,对延伸生物质原料产业链,促进聚氨酯行业绿色升级转型具有重要意义,为绿色制造提供理论指导与技术支持。项目执行期内,在Chem Eng J, Green Chem, Org Lett, ACS Sustainable Chem Eng,J Org Chem,等期刊上发表SCI论文30篇。获授权国际专利4件,国家发明专利25件。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
中国参与全球价值链的环境效应分析
基于微流控技术新型结构聚合物微球的制备及药物释放应用研究
基于MOEMS技术的集成微流控生物芯片研究与应用
新型POSS基纳米生物探针构建及基于微流控技术的肿瘤标志物多分子检测研究
基于微流控技术的生物气溶胶快速检测