Occupational drivers of commercial vehicles, employed in agriculture, construction, mining, freight/passenger transportation, are exposed to high magnitudes of low frequency whole-body vibration (WBV) and shock arising from vehicle interactions with rough terrains. Epidemiological studies have concluded that occupational exposure to WBV and shock environments of work vehicles is an important health risk among work vehicle drivers worldwide. Furthermore, severe vibration environment limits operators' visual and tracking abilities leading to reduced work rate. The control of terrain-induced vibration of such vehicles is generally limited to a suspension at the seat that provides either limited or negligible vibration attenuation, and cab mounts that help attenuate only high frequency vibration. The proposed research concerns: (1) characteristic of biodynamic response of seated body to single and multi-axis WBV, particularly the vibration absorption properties; (2) development of a multi-body biodynamic model of the seated body; (3) integrated suspension seat and design optimization to reduce the health risk of WBV; (4) assess related health risk of a class of off-road vehicles. Owing to the substantial interdisciplinary challenges, the study will promote collaborations among complementary expertise, nationally and internationally, which are vital for advancements in related health and safety risks; disseminate results to industry and workplace health & safety organizations to help reduce injury risks; and training of highly qualified professionals through students' research theses.
研究表明,人体长期处于全身振动(whole-body vibration, WBV)环境时,会损害人体健康而且降低工作效率。对从事林业、采矿业、建筑业、军事和货运客运等商用车的驾驶员,由于其工作环境的特殊性,他们会长时间承受来自地面的振动和冲击,以致身体长期处于全身振动的状态。本项目研究主要:(1)在粘弹性座椅和靠背支撑条件下,测量和分析人体对单方向和多方向振动激励下的生物动力学响应,然后建立人体多体生物动力学模型;(2)应用建立的模型评估人体各部位对振动能量的吸收能力,评估振动对人体各部分的损伤,由此建立在全身振动(WBV)工作环境下,人体损伤的评估方法;(3)基于人体生物动力学响应特征,建立集成的座椅系统与人体模型的耦合模型,并对座椅悬架进行优化设计。本项目的开展将推进人体生物动力学、人体振动损伤、座椅和座椅悬架系统设计的新理论与分析技术,具有重要的理论意义和工程应用价值。
研究表明,人体长期处于全身振动(whole-body vibration, WBV)环境时,会损害人体健康而且降低工作效率。对从事林业、采矿业、建筑业、军事和货运客运等商用车的驾驶员,由于其工作环境的特殊性,他们会长时间承受来自地面的振动和冲击,以致身体长期处于全身振动的状态。本项目研究主要研究成果为:.(1)在粘弹性座椅和靠背支撑条件下,测量和分析了人体对单方向和多方向振动激励下的生物动力学响应,建立人体多体生物动力学模型;.(2)应用建立的模型评估人体各部位对振动能量的吸收能力,评估振动对人体各部分的损伤,建立了在全身振动(WBV)工作环境下,人体损伤的评估方法;.(3) 基于人体生物动力学响应特征,建立集成的座椅系统与人体模型的耦合模型,提出了座椅悬架进行优化设计方法。 .项目的研究中,发表论文17篇, 其中SCI收录9篇, EI收录8篇。培养博士生:2名;硕士生4名,年轻教师1名。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
外泌体在胃癌转移中作用机制的研究进展
基于铁路客流分配的旅客列车开行方案调整方法
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
一种基于多层设计空间缩减策略的近似高维优化方法
0-20Hz侧倾振动下坐姿人体生物动力学特性研究
基于座椅支撑调节的人体脊椎振动损伤保护方法研究
乘用车座椅-乘员系统动力学建模与分析
基于非均质接触面振动传递特性的人-椅耦合系统动力学研究