This study was designed a kind of dual-targeting multifunctional nano-carrier for the combination therapy of ovarian cancer. Restructuring cell microparticle(FA-PEG-rMPLip) was prepared, which is combined by paclitaxel liposome modified by folate and cell membrane including tumor antigen MUC1 and co-stimulation factor B7-1. IFNα-Trail plasmid should be mixed with PEI and then combined with FA-PEG-rMPLip to formulate FA-PEG-rMPLip/PEI/DNA nano-carriers. This nano-carriers were injected through vein and cloud be recognized by tumor issue with the recognization effect of FA-PEG . After the endocytosis-lysosomal escape and membrane fusion process, PTX and DNA could be delivered into cytoplasm. And then PTX、TRAIL and IFNα would destroy the tumor cells、multi-drug resistant tumor cells and tumor stem cells at the same time. What’s more, B7-1 and MUC1 protein fused to the surface of tumor cells play an essential role in enhancing CTL against cancer cell. This new complex is able to destroy the tumor issue effectively, with decreasing toleration of chemotherapy and systemic toxicity. It will provide a new model for the combination therapy of ovarian cancer.
本研究设计一种双靶向多功能纳米传递载体,用于卵巢癌多靶点联合治疗。以叶酸修饰紫杉醇脂质体,与镶嵌肿瘤相关抗原MUC1和共刺激因子B7-1的细胞膜片段融合,制备重组类细胞微颗粒脂质体(FA-PEG-rMPLip)。IFNα-Trail质粒与PEI和FA-PEG-rMPLip复合,形成FA-PEG-rMPLip/PEI/DNA纳米载体。该载体静脉注射后,由FA-PEG引导靶向识别肿瘤细胞,经内吞-溶酶体逃逸和膜融合两种方式将PTX和DNA递送到细胞中,PTX、Trail蛋白和IFNα蛋白针对各自的靶点发挥对肿瘤细胞、多耐药肿瘤细胞和肿瘤干细胞的同步杀伤作用; B7-1和MUC1蛋白融合到肿瘤细胞表面起到增强机体对肿瘤的CTL作用。上述设计,能够降低卵巢癌对化疗的耐受,靶向杀伤肿瘤,减小系统毒性,抑制免疫逃逸,避免复发和转移,为卵巢癌的联合治疗提供了一种新模式。
本课题拟设计和构建一种双靶向多功能纳米传递载体,用于卵巢癌多靶点联合治疗。以叶酸修饰紫杉醇(PTX)阳离子脂质体,与镶嵌肿瘤相关抗原MUC1的细胞膜片段融合,制备重组类细胞微颗粒脂质体(FA-PEG-rMPLip),将共表达IFNα-TRAIL的质粒与其复合,成功制备多功能复合载体。该载体由FA-PEG引导靶向识别肿瘤细胞,将PTX和DNA递送到细胞中,PTX、TRAIL蛋白和IFNα蛋白针对各自的靶点发挥对多种肿瘤细胞的同步杀伤作用。PTX和TRAIL具有协同作用,PTX可通过上调肿瘤细胞表面死亡受体4和5增加细胞对TRAIL杀伤得敏感性,减少药物使用剂量,降低毒性。MUC1蛋白融合到肿瘤细胞表面起到对肿瘤免疫杀伤调节作用,为卵巢癌的联合治疗提供了一种新模式。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
双靶向多功能纳米基因传递载体在鼻咽癌生物治疗中的作用及机制研究
多功能纳米载体与靶点细胞相互作用的机制研究
抗c-Met/PDL-1双靶点纳米抗体在肿瘤靶向免疫治疗中的作用及机制研究
肿瘤靶向药物及siRNA联合传输多功能纳米载体研究