The combination of methanogenesis and anaerobic ammonia oxidization (ANAMMOX)can achieve carbon and nitrogen removal with energy gases production. Until now, very limited researches have been carried out on achieving methanogenesis for treating municipal wastewater. Moreover, metabolic pathway and function regulation of anaerobic ammonia oxidizing bacteria (AnAOB) need to be further investigated. In this project, new analytical methods including metagenomics, qPCR and STM will be used to analyze functional gene type and metabolic mechanism in ANAMMOX and methanogenesis systems. The interactive relationship among key functional flora will be further studied. New metabolic mechanism of the interactions between AnAOB and regulators will be explored. Furthermore, cell imaging microporous plate detection technology (3D cell culture) combined with fluorescence imaging, AFA or STM, will be used to study and analyze the effects of regulators on key functional bacteria metabolism activity and biofilm. The adjusting and control strategies of the activity of methanogens and AnAOB will be further determined. Based on the achieving high efficient methanogenesis and ANAMMOX, the combination process of methanogenesis and ANAMMOX for organic and nitrogen removal from municipal wastewater will be established. In this process, high efficiency of carbon and nitrogen removal will be obtained. Carbon resource utilization will be also achieved. This research can transform wastewater treatment from energy consumption to energy production.
在单一厌氧反应器内实现产甲烷同时厌氧氨氧化ANAMMOX,可实现产能除碳脱氮工艺。目前,尚缺乏对城市污水厌氧产甲烷技术的研究,有关厌氧氨氧化菌(AnAOB)的代谢途径及功能调控尚需深入研究。本项目采用宏基因组学、qPCR和STM等分析技术和手段,解析ANAMMOX和产甲烷系统中功能基因类型和代谢机理,深入研究关键功能菌群间相互作用关系,探索AnAOB代谢与调控因子互作新机理。同时,采用细胞成像微孔板检测技术(3D细胞培养)结合荧光成像、AFM或STM等,分析调控因子对关键功能菌群代谢活性和生物膜的影响,确定产甲烷菌和AnAOB活性调控策略,在分别实现高 效产甲烷和ANAMMOX工艺的基础上,构建与实现城市污水产甲烷ANAMMOX耦合除碳脱氮工艺。实现该工艺不但能够在厌氧条件下达到高效除碳脱氮的效果,而且可实现碳的资源化利用,为污水由耗能过程变为产能过程奠定一定基础。
实现城市污水高效低耗除碳脱氮是污水处理领域关注的热点。本项目以基因组学和qPCR等分析技术为手段,构建产甲烷ANAMMOX混菌体系为目标,针对城市污水产甲烷与ANAMMOX复合微生物系统中功能基因分析、代谢调控、工艺优化及产甲烷ANAMMOX耦合系统等,开展了以下三个方面的研究工作:.1)城市污水ANAMMOX生物滤池中关键功能菌群代谢调控。Anammox 滤池中 AnAOB 是优势菌群,长期运行下发生了 AnAOB 菌群结构演替的现象,优势 AnAOB 从 Candidatus Kuenenia转变为Candidatus Brocadia,其丰度 9.6%上升至 31.7%,系统中的信号传导、脂质代谢及细胞运动等功能由 AnAOB 主导,且 AnAOB 的生长依赖于其他菌群为其提供维他命 B6 和叶酸等必需生长因子,系统中多种菌群的共生使 Anammox 滤池维持长期稳定。.2)城市污水厌氧产甲烷生物滤池工艺优化与关键功能菌群代谢调控。本课题在实际污水处理厂建立了生物滤池中试研究平台,实现了城市污水厌氧产甲烷生物滤池工艺。针对关键性因素温度和饥饿等进行了研究,发现温度的降低会导致系统COD去除能力和产甲烷能力的显著下降,但在22℃,HRT=5h条件下仍可以保持75%以上的COD去除率和0.20 L CH4/g CODre的甲烷产率。同时在低温条件下,乙酸型产甲烷菌的丰度逐渐降低,而氢营养型产甲烷菌的丰度不断增长,系统的产甲烷途径由乙酸营养型途径向氢营养型途径转化。厌氧滤池不需要频繁反冲洗,可通过浊度变化和水头损失来判断反冲洗时机,并通过在线浊度来控制反冲洗过程。虽然厌氧微生物对氧非常敏感,可采用单独水冲的方式对生物膜进行更新,反冲洗之后反应器可迅速恢复其COD去除能力和产甲烷能力。.3)构建与实现产甲烷ANAMMOX混菌体系与工艺。本课题将产甲烷与ANAMMOX耦合,出水SCOD浓度平均为58.28mg/L,TCOD浓度平均为75.43mg/L,SCOD和TCOD平均去除率分为81.3%和81.47%。NO2--N和NH4+-N去除率分别可稳定达到99.18%和88.54%,TIN去除率可达到91.9%。与传统的硝化反硝化污水处理工艺相比,该工艺可进一步降低污泥产量,节省碳源投加量,减少温室气体释放,降低曝气能耗。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
城市轨道交通车站火灾情况下客流疏散能力评价
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
基于有机物优化配置的脱氮除磷菌群结构演变及电子竞争机制研究
同步除碳脱臭A/O新工艺及其高效功能菌群的构建和调控
生物脱氮除磷系统中微丝菌代谢分子影像过程及污泥膨胀控制机制
城市污水SNEDPR工艺的性能与菌群结构优化及其与Anammox耦合特性