As one optional type of micro power sources for low-power electronic devices, radioluminescence photovoltaic nuclear microbatteries have great value to study and magnificent potential development due to their special advantages. On the basis of the previous research, this project proposes a new improved idea about combining quantum dots regulation and surface plasmons resonance enhancement. This new idea could enhance the matching degree of radioluminescence spectra and photovoltaic response and improve the luminescence emission intensity. A micro-nano-scale fine structure model of the mircobattery energy conversion unit will be established with the theory. By using the Condensed-history Algorithm, Kubelka-Munk theory and detailed balance principle, the transport process of alpha particles, radioluminescence photons and electron-hole pairs will be simulated accurately to research the physical mechanisms of the physical parameters on the output performance of microbatteries. The regulatory mechanism of the structural parameters on the radioluminescence spectrum of the core-shell structure quantum dots will be researched. The enhancement mechanism of the radioluminescence emission with the surface plasmons resonance effect will be discussed in detail. Then the optimal physical parameters and ideal coupling method of quantum dots and metal nanoparticles can be obtained. Improved battery prototypes, which are fabricated, will be prepared as test objects to analyze the influence law of α particles on the properties of luminescent materials. The service life and the performance stability of microbatteries will be studied. This research work will offer technical references for the practical applications of this type of nuclear batteries.
辐致光伏效应核电池作为未来低功率电子器件的长寿命微型动力源,具有较高的研究价值和发展潜力。本项目在已有研究基础之上,提出“量子点调控”和“表面等离激元共振强化”相结合的改进新思路,以提高辐致光伏效应核电池中辐致荧光光谱与光伏响应的匹配程度,并增强辐致荧光的发射强度。建立微纳米尺度的电池换能单元精细结构模型,采用历史凝聚算法、Kubelka-Munk理论以及精细平衡原理等,精确模拟α粒子、辐致荧光光子及电子空穴对的输运过程,构建核电池各物理参量与电池性能的理论关系。研究核壳结构量子点荧光材料的结构参数对辐致荧光光谱的调控机理;揭示金属纳米颗粒表面等离激元共振效应对荧光发射的增强机制,获得量子点和金属纳米颗粒的物理参量优化值及理想耦合方式。以制备出的改进型电池样品为测试对象,研究同位素源α粒子对新型荧光材料长期作用的影响规律,评估电池使用寿命和性能稳定性,为此类型核电池的实际应用提供技术参考。
针对辐致光伏效应核电池开展了荧光光谱调控与增强技术研究,重点对量子点荧光层核电池的制备和性能稳定性进行了研究。主要研究成果有:1)建立了电池微纳米尺度结构模型,精确模拟了β粒子、荧光光子及电子空穴对在换能材料中的输运过程,构建了各项物理参量与电池性能的响应关系。在5.92mg/cm2的Pm 241源辐照下,电池总效率随荧光层厚度先增后减。禁带宽度为2.075eV时,总效率达到2.6%。2)搭建了绝对光强测试平台,分析了量子点荧光材料不同粒径和修饰厚度下光谱峰值和β辐致荧光强度的变化规律,给出了量子点最佳结构参数。3)制备了“CdSe/ZnS量子点荧光材料+金属纳米颗粒”结构的辐致光伏效应同位素电池样品2个;研究发现,油相量子点中添加Au纳米颗粒,其相对荧光强度提升约26倍;水相量子点中添加Ag纳米颗粒后,其相对荧光强度提升约51倍;同位素电池输出功率提升2倍以上。4)在Am-241 α源辐照下,核电池能量转换效率达到0.50%;5)在质子束和电子束分别辐照下,研究表明ZnS基质的荧光层辐照稳定性较高,可以长期应用于辐致光伏效应核电池。6)发表SCI学术论文20篇;申请国家发明专利5项;获得江苏省微课教学比赛一等奖;培养研究生2名,获省优秀论文1项,在读博士2名,在读硕士3名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
低轨卫星通信信道分配策略
辐致伏特/光伏双重效应多级同位素电池能量转换机制与性能优化研究
用于宽光谱光伏电池的能带梯度材料的研究
基于炔类单体构筑新型金属共轭聚合物光伏电池材料的合成与光伏性能研究
采用新型光谱技术及高介电复合材料突破有机光伏电池的效率极限