辫Floer同调及其推广

基本信息
批准号:11526115
项目类别:数学天元基金项目
资助金额:2.60
负责人:马家骥
学科分类:
依托单位:南阳师范学院
批准年份:2015
结题年份:2016
起止时间:2016-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:
关键词:
Floer同调
结项摘要

Braid Floer homology is a new theory which is introduced several years ago. It is a topological invariant of braids on unit disc. How to generalize braid Floer homology and study its property is an impotant question in low dimensional topology and symplectic geometry. In this project, we will focus on braid on closed surface and study its property, investigate the moduli space of braid on closed surface, study the compactness of the moduli space, then define braid Floer homology of closed surface. Furthermore, we can find its influence on Hamiltonian dynamics on closed surface and Poincare-Hopf theorem of braid Floer homology of closed surface.

辫Floer同调是最近几年提出的一种新的Floer同调,它是圆盘上辫的拓扑不变量。如何推广辫Floer同调的构造并且研究它的的性质,是低维拓扑和辛拓扑中的一个重要课题。在本项目中,我们打算研究闭曲面上的辫以及辫的性质,考察闭曲面上辫的模空间及其紧致性,进而将辫Floer同调推广到闭曲面上。在本项目的基础上,可以继续考察闭曲面上辫Floer同调对闭曲面上哈密尔顿周期点的影响,以及相应的Poincare-Hopf定理。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Ordinal space projection learning via neighbor classes representation

Ordinal space projection learning via neighbor classes representation

DOI:https://doi.org/10.1016/j.cviu.2018.06.003
发表时间:2018
2

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

DOI:
发表时间:2021
3

Image super-resolution based on sparse coding with multi-class dictionaries

Image super-resolution based on sparse coding with multi-class dictionaries

DOI:doi: 10.31577/cai 2019 6 1301
发表时间:2019
4

Phosphorus-Induced Lipid Class Alteration Revealed by Lipidomic and Transcriptomic Profiling in Oleaginous Microalga Nannochloropsis sp. PJ12

Phosphorus-Induced Lipid Class Alteration Revealed by Lipidomic and Transcriptomic Profiling in Oleaginous Microalga Nannochloropsis sp. PJ12

DOI:10.3390/md17090519
发表时间:2019
5

Numerical investigation on aerodynamic performance of a bionics flapping wing

Numerical investigation on aerodynamic performance of a bionics flapping wing

DOI:10.1007/s10483-019-2532-8
发表时间:2019

马家骥的其他基金

相似国自然基金

1

三维流形的Floer同调

批准号:11001147
批准年份:2010
负责人:艾颖华
学科分类:A0111
资助金额:16.00
项目类别:青年科学基金项目
2

三维切触拓扑,Heegaard Floer同调,和范畴化

批准号:11601256
批准年份:2016
负责人:田垠
学科分类:A0111
资助金额:19.00
项目类别:青年科学基金项目
3

辫群密码理论及关键算法研究

批准号:60973159
批准年份:2009
负责人:王励成
学科分类:F0206
资助金额:32.00
项目类别:面上项目
4

辫的协迫与Nielsen理论的关系

批准号:11326077
批准年份:2013
负责人:王皎云
学科分类:A0112
资助金额:3.00
项目类别:数学天元基金项目