Articular cartilage injury is the high incidence of refractory disease; the overall incidence is more than 61%. It often gives rise to many symptoms such as joint swelling and pain, leading to the occurrence of osteoarthritis. Thereby, it often affects people's daily life and work. To athletes, it will seriously obstruct their athletic career. Sometime, it can even lead to disability. Now, there still hasn't an effient treatment to solve this problem in worldwide. The existing repair methods exist main problems composed of two aspects: on the one hand, the defect area lacks the biological activity of the component (cells, scaffold) filling, always the scar tissue or fibrous tissue. On the other hand, It’s hard of these repairs tissue to differentiate into chondrocytes or cartilage tissue because of the lack of an effective induction. In a word, there is no similar microenvironment of cartilagethe according to existing treatments on cartilage repair. To solve these problems, the present study was based on the microenvironment changes in cartilage injury. There are two aspects to be investigate in the present study based on preliminary results of our studies: on the one hand, we will investigate the interaction between bone marrow mesenchymal stem cells which recruited after cartilage damage and chondrocytes of cartilage damage, including the suitable amount of bone marrow mesenchymal stem cells raised from bone marrow and whether raising the mesenchymal stem cells are able to promote the repair of cartilage damage. On the other hand, we will research the related miRNA and lncRNA of cartilage damage cartilage injury and repair, as well as whether these factors participated in the cartilage injury and repair and the regulation of bone marrow mesenchymal stem cells into cartilage cells, further study its function. Through these studies, we hope to able to provide a theoretical basis for the influence of microenvironment on chondrocytes. We hope we can screen some key molecules in the cartilage injury and repair process, this not only provide the basis of the theory but also the practice in further used for the prevention and treatment of cartilage damage.
关节软骨损伤是难治性损伤,总体发生率在61%以上,常引起关节肿痛等症状,可继发骨关节炎,对普通人群的工作、生活以及运动员运动生涯造成损害,甚至致残。目前尚无理想治疗方法。现有修复方法主要存在两方面问题:一方面缺损区域缺乏有生物活性的成分(细胞,支架)填充。另一方面,这些修复组织缺乏有效的诱导难以分化为软骨细胞或软骨组织。简言之,没有提供给一个与软骨组织相似或相近的特异性微环境。本课题以软骨损伤后的微环境变化为切入点,结合前期结果,一方面研究软骨损伤后损伤区域骨髓间充质干细胞与软骨细胞的相互作用。另一方面研究在软骨损伤修复过程中,是否有相关miRNA和lncRNA参与软骨损伤的过程以及是否参与调控骨髓间充质干细胞分化为软骨细胞,进一步研究其功能。通过这些研究为微环境对软骨细胞的影响提供理论依据,同时筛选软骨损伤修复过程中的关键分子,为进一步用于软骨损伤修复的预防及治疗提供理论及实践依据。
关节软骨损伤是难治性损伤,总体发生率在61%以上,常引起关节肿痛等症状,可继发骨关节炎,对普通人群的工作、生活以及运动员运动生涯造成损害。目前尚无理想治疗方法。现有修复方法仍存在一定缺陷,简言之,没有提供给一个与软骨组织相似或相近的特异性微环境。 .本课题以软骨损伤后的微环境变化为切入点,分别对细胞学微环境、力学微环境、生物学微环境和组织结构学微环境进行研究。细胞学微环境方面,建立了BMSC标准化分离培养方法及共培养体系,构建轻度软骨损伤新型模型,并通过还原氯金酸合成纳米金颗粒建立了诊断软骨损伤新方法。力学微环境方面研究了力学环境改变对软骨细胞表型、细胞外基质以及软骨组织中circRNA表达谱的影响,进而探讨机械应力相关circRNA在软骨中的功能及机制,明确其参与了软骨细胞外基质降解过程。生物学微环境中探究了OA软骨与正常软骨间circRNA表达谱差异,并明确了circRNA-CER可通过作为miR-136的“吸附海绵”来调控MMP13的表达。重点研究了circRNA 和microRNA-101促进软骨退变进程的机制,明确了microRNA-101参与骨髓间充质干细胞成软骨分化过程,同时探究了软骨损伤微环境中lncMSR-miR152-TMSB4功能轴调控软骨细胞外基质合成机制。采用高通量方法筛选出有效改善软骨损伤的化合物BNTA,并证实SOD3为其作用靶点。组织结构学微环境研究中,对前期制备的E7-CS-DBM复合支架组织结构进行优化,使其具有更好的可塑性。采用同轴静电纺丝技术制备具有TGF-β1缓释作用的纳米级纤维支架,共价结合BMSC亲和多肽E7,证明其可有效促进BMSC向软骨细胞分化。构建了结构与功能双重优化的蚕丝蛋白-明胶复合支架,在关节软骨修复方面表现出优异性能。还制备了可缓释TGF-β1和IGF-1的多孔聚磷腈微球,可长时间保持生物因子浓度和活性,并有合适的降解速率与良好的生物相容性。.本研究证实细胞学微环境、生物学微环境、组织结构学微环境共同组成软骨损伤修复局部微环境,三者缺一不可。因此,从细胞、生物因子及组织结构水平多维度、多层次构建与软骨组织功能与结构相似的整体微环境,可有效促进软骨组织修复再生。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
低轨卫星通信信道分配策略
中国参与全球价值链的环境效应分析
坚果破壳取仁与包装生产线控制系统设计
osf2/cbfa1、BMP12以脂肪来源干细胞为载体对重建后前交叉韧带塑形改建及止点愈合作用的研究
软骨特异微环境对再生软骨类型的影响及调控机制
软骨细胞Neuroleukin的分泌对自身表型维持的影响及在软骨损伤修复中的作用
软骨整合界面细胞生物学状态对软骨整合程度及软骨修复质量的影响
靶向诱导活化自体软骨前体细胞修复早期软骨损伤的作用机制研究