Wheel motor is recognized as the most ideal form for electric vehicle (EV) drive in the coming generation, because of its emerging merits, such as, none gearbox, flexible control, compact structure and so on. But, with a rigid connection between hub and motor, it brings the mechanical shock and electromagnetic impulsion inevitably, in turn, lowers the power quality and comfort level much more, especially in starting and braking. Like traditional cars, in which a mechanical friction clutch is used to make the transfer within firing, starting and shifting very smoothly, one suppose that all impacts occurred in wheel drive could be remitted by a suitable and controllable clutch between hub and motor, replacing the rigid connection with a flexible one. Accordingly, this proposal focuses on to invent a novel bistable permanent magnet electromagnetic clutch device (unit) and its integration. This full electrically-controlled unit should have some extra-desired features as follows. Firstly, it must be self-holding without any energy consuming no matter in 'touch' or 'detach' steady state. In second, it should be shaped finely and sized compactly so it can match the strictly-limited available space in hub exactly. The third, depended on a well-equipped master-slave pair, it would be able to create a new solution for EV drive highlighted with the possibilities of 'no-load starting, variable-idle shifting and detached braking' together. In process, this project will pay great attention on the manufacturing of multi-objective prototype series, aimed for principle demonstration, experimental evidence, performance optimization, etc. With accumulated experience related to various materials, structural types, skills, integrated and embedded design ideas, control programs, and so on, a competitive choice for wheel EV drive will be supported theoretically and technically, both detailed data and practical gauges.
轮毂电机是下一代纯电动汽车的优选驱动方案。但电机与轮毂采用紧固连接方式,机械冲击和电磁冲击不可避免,急起急停时尤为突出,可靠性降低,舒适感变差。鉴于普通汽车采用机械离合器实施动力切换,使点火起动与车辆起步分离,速度平滑变化,若设想电机和轮毂间的刚性连接也能用某种与此相仿的离合装置予以替换,则机械与电磁冲击就有可能缓解。为此,本课题提出并研究一种新型永磁双稳态电磁离合器装置及系统。这种装置具有稳态"自持"特征(常开,不耗能),控制灵活,能实现电机转子与轮毂,即主、从传动副间的可控柔性连接,可望构成"电机空载起动+最优怠速切换+机电分离制动"全新驱动模式。通过研制不同技术特征的单元样机及功能组件,开展实验研究和系列化、最优化探讨,积累材料、结构、设计、运行等方面的原始经验与数据,构建这种新系统的嵌入式、一体化集成设计理论与工程规范,将为轮毂电机的推广应用提供更具竞争力的实用技术方案。
本项目提出并研究了一种新型永磁双稳态电磁离合装置及系统,该装置结构紧凑,能实现电机转子与轮毂之间的可控柔性连接,以缓解轮毂直驱式电动汽车急起急停时的机械冲击和电磁冲击,提升汽车可靠性和舒适感。项目开展了不同技术特征单元样机及功能组件的实验研究,通过深入探讨,论证了“电机空载起动+最优怠速切换+机电分离制动”驱动新方案的可行性及技术先进性,建立了这种新系统的一体化设计理论与工程规范,为轮毂电机的推广应用提供了更具竞争力的技术方案。.本项目的研究内容主要包括以下四个方面。.其一,通过对原创新型永磁双稳态电磁离合器磁场进行分析计算,结合优化设计目标,并开展微拓扑分析,确定了离合器结构尺寸设计的基本准则。构建了单元样机的通用实验平台,并开展静力学和动力学分析,探讨力与运动的关系,确定了磁化电流的上(磁体去磁)、下(作动阈值)边界以及最小脉冲宽度。.其二,提出了一种小型脉冲电源供电方案,其具有结构更简单(可省除位置检测和滑环),运行更可靠(实现自关断功能),衔铁运动更平稳等优点。提出了脉冲电源的匹配设计方法,确定了主要参数的选取方案,并开展小功率脉冲电源供电单元样机的动力学分析,验证了小功率脉冲电源的优越性及匹配设计的合理性。.其三,构建了轴突式和摩擦式电机离合器装置一体化实验平台,深入探讨了其动作过程,得到了轴突式离合装置能可靠接合时的电机怠速约束,分析了离合器相关指标对摩擦式离合装置接合可靠性的影响,同时开展了小功率脉冲电源供电离合器组同步作动的理论和实验研究,确定了协调动作的一致性标准。实验研究论证了设计的合理性和可靠性。.其四,搭建了电机离合系统专用综合实验平台,探讨了离合器最优怠速切换的运行控制规律,凸显了怠速起步较直接起步的优越性(缓释电磁冲击和机械冲击效果显著);明晰了变怠速起步较固定怠速起步的技术优势(基于实际负载选取怠速,更好的舒适性和负载能力);针对大负载工况,提出了基于怠速上限的自适应拓展控制方案,在保障舒适感的前提下,挖掘了系统最大负载能力。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于非线性接触刚度的铰接/锁紧结构动力学建模方法
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
环形绕组无刷直流电机负载换向的解析模型
强震作用下铁路隧道横通道交叉结构抗震措施研究
基于贝叶斯统计模型的金属缺陷电磁成像方法研究
永磁电机-电力电子装置系统电磁振动与减振技术研究
电磁直线馈能悬架与AFPM轮毂驱动系统的集成优化研究
电动汽车用交替极轮毂电机电磁优化和高转矩精度控制策略研究
双离合器式单电机重度混合动力系统匹配与控制研究