Transition metal/compound core/shell nanoparticles have attracted great attention during the past years due to their special magnetic, optical and catalytic properties and application potentials, for the coupling effect between transition metal core and compound shell. Thus the research for the controllable synthesis, atomic structures and peculiar properties is of great scientific importance and application values. In this project, transition metal/compound core/shell nanoparticles with controllable single-crystal structure will be synthesized through wet chemical methods, including galvanic replacement, seeded growth etc. Based on the investigation of the effect of the synthesis method and conditions on the morphology, size, chemical composition, and structure of the synthesized nanoparticles, we will develop the controllable synthesis method for the fabrication of transition metal/compound core/shell nanoparticles with specified crystal structures and morphology. The composition, microstructure, strains and electronic structure of the nanoparticles will be explored with advanced transmission electron microscopy (TEM) and opitical analytical methods at various length levels, and the information of the lattice relaxation, stress distribution and the electronic state of the sample will be quantitative analysised. The difference of catalytic, magnetic and optical properties between the specific core/shell nanoparticles and their monometallic counterparts will be measured and then the relationship between property and structure will be studied. The objective is to establish a comprehensive and integrated research with a relationship between the structure and property, with the assistance of computing simulation and the theoretical research, and to reveal the deep physical mechanism of the dependence of magnetic and catalytic properties to atomic structure and electronic structure, which will promote the application of nanoparticles in information, energy and catalytic areas.
由于过渡金属和化合物之间的耦合效应,过渡金属/化合物纳米核壳粒子在磁学、光学、催化等方面具备优异的性能,开展其可控制备、原子结构和特性研究具有重要的科学意义和应用价值。本项目拟采用成核生长、原位取代等湿化学方法,制备结构可控的过渡金属/化合物单晶核壳纳米粒子,探究合成方法和条件对粒子的形态、尺寸、结构、成分等的影响规律,发展具有指定晶体结构和形貌的过渡金属/化合物核壳纳米粒子的可控制备方法;综合采用多种先进的电子显微分析方法和光学分析手段,多尺度表征粒子的组分、微结构、缺陷、电子结构等,定量分析样品的晶格驰豫、应力分布及电子态信息;测量纳米粒子的催化、磁学、光学等性质,比较核壳结构与单一成分、结构纳米粒子的催化、磁学、光学等性质的差异。结合模拟计算和理论研究,探索结构与性质间的相互关系,揭示纳米粒子的原子结构、电子结构影响其磁性和催化活性的的物理本质,推进其在信息、能源、催化等领域的应用。
纳米材料科学是当今一个非常重要的研究领域。纳米材料拥有与块材的不同新奇的性质,有着重要的应用价值。纳米科学已经发展成为一个多学科交叉,应用广阔的前沿科学。在日益严峻的能源危机和伴随而来的环境问题双重压力下,发展新型清洁能源,解决关键的储能问题迫在眉睫。开发基于廉价原材料的具有高催化性能的OER催化剂成为氢能源应用里的关键一环。我们成功制备了过渡金属化合物-贵金属纳米核壳结构(Au/Ni12P5核壳结构),结合对纳米材料结构和形貌的控制,利用贵金属元素通过界面对体系的原子结构和电子结构进行调节,从而提高了其3d电子的催化能力。测试发现这种材料具有良好的OER催化性能,研究了表界面结构与物理化学性质间的相互关系,结合第一性原理计算方法,探索过渡金属纳米异质结构界面状态影响催化性质的本质。.我们还制备了尺度尺寸统一、网状结构、具有高孔隙率的Co(OH)2微球和Co3O4微球结构,以及CoP2纳米花结构。它们在超级电容性能测试中表现出较高的比电容、良好的可逆特性和可观的循环寿命。该材料在能量储存领域有着实际的应用价值。.在自然科学基金的资助下,我们在Nano Research、Nanoscale等刊物发表SCI论文4篇;授权国家发明专利1项。.
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
内点最大化与冗余点控制的小型无人机遥感图像配准
基于二维材料的自旋-轨道矩研究进展
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
双元过渡金属纳米粒子的可控制备、原子排列和特性研究
核壳双金属纳米粒子的可控制备、原子结构和物性研究
单原子层过渡族金属(VIB族)硫属化合物的可控制备和光电特性研究
无机纳米粒子-金属有机骨架化合物核壳纳米结构的制备及性能研究