Aflatoxin contamination brings serious threat to food safety, and most attentions have been paid to development of the green and efficient strategies for aflatoxin degradation at present. The technology of photocatalytic degradation under visible light irradiation has exhibited the application prospect in degradation of aflatoxin. It was found from our previous studies that the part of toxic sites (double bond of furan ring and dicarbonyl oxygen) of aflatoxin could be degraded over photocatalysts such as carbon nitride under visible light irradiation. However, above way of aflatoxin detoxification suffers from low selectivity, unclear reaction mechanism, and poor recoverability of photocatalysts, which limit its application. In order to solve above problems and based on our previous studies, nickel ferrite (NiFe2O4) with magnetic property, stability and high light utilization is optimized as a core material for in-depth studies on photocatalytic degradation of the toxic sites of aflatoxin in this project. The main contents include: 1) exploring the relationship between the surface properties and micro-structures of NiFe2O4 and the toxic sites through different methods of surface modification and functionalization, and preparing NiFe2O4 photocatalyst with high selectivity that can promote combination between the toxic sites of aflatoxin and the surface of NiFe2O4, then selecting other suitable visible-light-responsive photocatalysts for construction of effective NiFe2O4 composites, 2) estimating the performance of these composites on photocatalytic degradation of the toxic sites of aflatoxin systematically, and verifying the photocatalytic degradation mechanism of the toxic sites through the structural identification of degradation products, migration and transformation of reactive radicals during photoreaction, 3) evaluating the toxicity and safety of degradation products through cytotoxicity test and chronic toxicity test for scientific and practical verification of above studies. Therefore, this project can provide scientific evidence and theoretical guidance for development of a green, stable, efficient and high selective technology for aflatoxin reduction and mitigation.
黄曲霉毒素污染严重威胁食品安全,开展绿色、高效黄曲霉毒素降解技术研究已成为当前研究热点和难点,而可见光催化降解技术为其发展提供了有利的契机。我们前期研究发现氮化碳等材料具有光催化降解黄曲霉毒素部分毒性位点(呋喃环双键和二羰基氧)的作用,但存在选择性难控制,降解机理不明和材料难以循环利用等瓶颈难题。本项目拟在前期基础上,选取磁性、稳定和光利用率高的铁酸镍为核心光催化剂,进一步开展选择性催化降解毒性位点研究。通过不同的表面改性和功能化,揭示毒性位点与材料微结构和表面性质关联性,研制高选择性识别和结合毒性位点的铁酸镍,并构筑高效的可见光响应复合材料;系统评价复合材料催化降解毒性位点的活性,结合降解产物结构和催化反应活性自由基迁移转化,剖析选择性光催化降解毒性位点机理;最后通过评价降解产物细胞毒性和慢性毒性验证理论科学性与实用性,为建立绿色、稳定、高效和高选择性黄曲霉毒素消减技术提供科学依据。
黄曲霉毒素污染严重威胁食品安全,开展绿色、高效黄曲霉毒素降解技术研究已成为当前热点和难点,在前期研究发现光催化能降解黄曲霉毒素部分毒性位点(呋喃环双键和二羰基氧)的基础上,本项目进一步开展选择性催化降解毒性位点研究。通过不同的表面改性和功能化,揭示了毒性位点与材料微结构和表面性质关联性,研制了高效的可见光响应复合材料,结合降解产物结构和催化反应活性自由基迁移转化,解析了选择性光催化降解毒性位点机理。基于以上研究,以国家自然科学基金为第一标注,发表论文5篇,其中SCI论文4篇,IF均大于10,最高IF:24.319,申请专利5件,获授权发明专利2件,希望能为建立绿色、稳定、高效和高选择性黄曲霉毒素消减技术提供科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
铁酸锌的制备及光催化作用研究现状
工业萝卜泡菜发酵过程中理化特性及真菌群落多样性分析
黄曲霉毒素解毒酶催化降解底物的分子机理及其定向改造的研究
食用植物油中黄曲霉毒素可见光催化降解材料的设计、合成及性能研究
等离子体降解黄曲霉毒素的效果与机理研究
镍铁基析氧催化剂Ni位点的电子结构调控及析氧性能研究