The coupled transfer of electrons and protons underlies a wide range of biological and chemical processes, including natural and artificial systems. Proton-coupled electron transfer (PCET) reactions play an essential role in photosynthesis and respiration, as well as in energy conversion and storage, depollution processes and design of new and performing catalytic molecular machineries.. Quinone species are widely found in living organism and are attractive for the preparation of molecular devices and switches. In particular, quinone derivatives are important to understand the coupling of proton and electron transfer which are at the core of numerous natural and artificial systems in chemistry and biology. Aim to understand the coupling of proton and electron transfer, a novel series of anthraquinone-based molecular wires with multidentate anchor groups will be synthesized and characterization. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS), combined with cyclic voltammetry, and the density functional theoretical (DFT) method will be used to investigate self-assembledmonolayer (SAM) adsorption and reduction processes of anthraquinone derivatives in buffered, unbuffered aqueous solution and ionic liquids. The mechanism of the proton coupled electron transfer cyclization reaction of 1-anthraquinone molecule will be studied. The single-molecular conductivity of 1-anthraquinone molecular wires with different structures will be measured in different medium by the STM break junction (STM-BJ) technique and the effect of the proton coupled electron transfer cyclization on the electron transmission will also be elucidated. The result of this study will not only help to understand the proton coupled electron transfer mechanism in organism but also important to the molecule self-assembly, the energy storage and transfer, designing new catalyst and developing the synthetic method for the polyaromatic hydrocarbon.
醌类在化学和生命过程中广泛存在,是研究生物体内质子耦合电子转移(PCET)的理想模型化合物。目前的研究主要集中在结构简单的苯醌类,而对质子耦合电子转移同时伴随结构可逆“关/开”环化的醌类研究未见报道。我们前期的研究表明,此类醌类不仅具有可逆结合/释放质子和电子的特性,可能还具有更好的储能容量和开关能力。本项目设计、合成一系列结构新颖、具有多“齿”锚定基团、C=C或C≡C联接的蒽醌分子线;利用常规电化学、SERS技术和DFT理论计算相结合,考察蒽醌分子在金电极表面的自组装行为,在缓冲、非缓冲水溶液和非水体系中的电化学反应机理,揭示1-蒽醌分子质子耦合电子转移成环反应机理;利用STM裂结技术,测量不同构型的1-蒽醌分子线的单分子电导,揭示质子耦合电子转移成环对其电子输运行为和开关能力的影响。我们的研究不仅丰富了PCET机理的研究,对分子自组装、能源储存和转化和设计新型分子催化剂都具有参考价值。
本项目设计、合成一系列结构新颖、具有多“齿”锚定基团、C=C或C≡C联接的蒽醌分子线;利用常规电化学、SERS技术和DFT理论计算相结合,考察蒽醌分子在金电极表面的自组装行为,在缓冲、非缓冲水溶液和非水体系中的电化学反应机理,揭示1-蒽醌分子质子耦合电子转移成环反应机理;利用STM裂结技术,测量不同构型的1-蒽醌分子线的单分子电导,揭示质子耦合电子转移成环对其电子输运行为和开关能力的影响。我们的研究不仅丰富了PCET机理的研究,对分子自组装、能源储存和转化和设计新型分子催化剂都具有参考价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
低轨卫星通信信道分配策略
坚果破壳取仁与包装生产线控制系统设计
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
基于二维材料的自旋-轨道矩研究进展
结构可控的二茂铁分子线的合成和单分子电子输运行为的研究
微生物耦合系统中蒽醌染料的絮凝和降解及其构效关系
蒽醌在碱法制浆过程中传质机理的研究
蒽醌类光敏药物中的超快光物理机制研究