Using transition metal oxides and sulfides as supercapacitor working electrodes, which exhibit high theoretical specific capacitance and specific energy density, is of great significance to the development of energy conversion and storage devices, improvement of energy utilization efficiency and environment protection. However, there are several defects in the current researches about electrode materials based on metal oxides and sulfides: (1) complex preparation technology and low yield; (2) lack of systematic design and study about synergistic and complementary effects between transition metal oxides and their corresponding metal sulfides in terms of their electrochemical performance; (3) lack of systematic and profound researches about regulating and controlling electrochemical performance of electrode materials based on transition metal oxides and sulfides. Therefore, this project is aimed to design new type of electrode materials for supercapacitor applications, which is beginning with the controllable and macroscopic quantity preparation of nickel, cobalt, molybdenum oxide/sulfide nanomaterials and their nanocomposites, explore a novel preparation method based on the combination of membrane technology and hydrothermal/solvothermal method, systematically study the synergistic and complementary effects between transition metal oxides and their corresponding metal sulfides, establish the influencing mechanism between composition, crystalline form, structural and morphological features of nanomaterials and their electrochemical properties, study the interplay betweent electrode materials, electrolytes and inactive components, including current collectors, binders and separators, and demonstrate the charge storage mechanism of supercapacitors assembled as well. This study will provide fundamental scientific basis for the design and properties regulation and control of electrode nanomaterials based on transition metal compounds for supercapacitors, promoting the development of new type supercapacitors with high electrochemical performance.
过渡金属氧化物、硫化物作为超级电容器储能材料具有很高的理论比容量和储能密度,这对研发新型能源转换和储能装置,提高能源利用效率和环境保护意义重大。而目前对于其作为储能材料的研究仍存在一些不足:制备方法复杂、很难实现产物的可控、宏量制备;对过渡金属氧化物/硫化物及其复合材料的制备及在电化学性能上的协同互补作用缺乏系统性设计和研究;针对这类纳米材料的电化学性能调控,探索的还不够深入和系统。为此,本项目从镍、钴、钼金属氧化物/硫化物及其复合材料的可控、宏量制备入手,探索膜技术和水热法/溶剂热法等相结合的新制备方法,研究这类材料在电化学性能上的协同互补作用,考察纳米材料组成、形貌、结构、晶型等变化对其电化学性能的影响机制,揭示电极材料与电解质溶液和非活性组分间的相容性,阐明储能机理。本研究将为过渡金属化合物及其复合材料设计和性能调控提供科学的理论依据,促进高性能新型超级电容器的研发。
过渡金属氧化物、硫化物作为超级电容器储能材料具有很高的理论比容量和储能密度,这对研发新型能源转换和储能装置,提高能源利用效率和环境保护意义重大。而目前对于其作为储能材料的研究仍存在一些不足:制备方法复杂、很难实现产物的可控、宏量制备;对过渡金属氧化物/硫化物及其复合材料的制备及在电化学性能上的协同互补作用缺乏系统性设计和研究;针对这类纳米材料的电化学性能调控,探索的还不够深入和系统。本项目从镍、钴、钼金属氧化物/硫化物及其复合材料的可控、宏量制备入手,探索膜技术和水热法/溶剂热法等相结合的新制备方法,研究这类材料在电化学性能上的协同互补作用,考察纳米材料组成、形貌、结构、晶型等变化对其电化学性能的影响机制,揭示电极材料与电解质溶液和非活性组分间的相容性,并阐明储能机理。目前为止,本项目取得了一系列研究成果:(1)实现了多组分复合电极材料的可控制备,充分利用复合材料的协同增强效应,获得具有优异电化学性能的电极材料,并提出材料组成对其性能的影响机制;(2)实现了复合电极材料微纳米结构的高效设计,建立了材料新型结构与其电化学性能间的内在联系,通过材料微纳米结构设计获得高性能电极材料,并提出了电极材料储能性能调控的基本规律;(3)通过对电极材料组成、结构、表/界面性质、活性位等的有效调控,以及对电极、集流体和电解质的功能性和适配性进行合理优化,构筑了高性能、宽温度适用范围的超级电容器储能装置,并提出了器件的性能增强机制和有效调控方法。本研究将为过渡金属化合物及其复合材料设计和性能调控提供科学的理论依据,促进高性能新型超级电容器的研发。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
钴基层状混合氢氧化物超级电容器电极材料的合成与性能
柔性超级电容器电极的可控合成及电化学性能
纳米多孔镍钼钴合金电极材料的制备及电催化析氢机理研究
微型超级电容器介孔钼/氧化钼核壳结构纳米柱阵列三维电极及其电化学性能