Manufacturing nuclear coolant pump (NCP) shaft with wear-resistant and anti-fatigue surface coatings presents a high performance manufacturing characteristic of integrated materials, design and processing for the component. In this proposal, two advanced surface coating techniques, i.e., High Power Impulse Magnetron Sputtering (HiPIMS) and High Velocity Oxy-Fuel (HVOF) spraying, are selected as representative methods to prepare wear-resistant and anti-fatigue Cr and WC-Ni coatings onto the NCP shaft, according to the geometries and material properties as designed on basis of the desired shaft wear and fatigue performance. Subsequently, the mass and energy input conditions of process loads for the selected surface coating techniques are analyzed and determined for the manufacturing. By reducing the multi-source coupled constraints from such as geometrical, structural, physical and chemical aspects, a controllable material loading can be derived as stress and stain field, temperature field and chemical potential field from the process loads. Correspondingly, the resultant surface modifications due to the material loading are inherently correlated to surface integrity parameters of the manufactured NCP shaft. With well-established relationship between the controllable surface integrity parameters and the performance, the high wear and fatigue performance is achieved on the manufactured NCP shaft with the functional surface coatings. The major aim of this work is to develop a principle of high performance manufacturing by surface coatings onto NCP shaft which is essentially based on the generation mechanism, the assessment method and the controllability of surface integrity for achieving the high wear and fatigue performance. It will also provide fundamentals and technology for supporting establishment of a framework for high performance manufacturing theory to solve inverse problem of high performance manufacturing in a knowledge-based way rather than in iterative way by trial and error.
核主泵泵轴耐磨抗疲劳覆层具备材料、设计、制造一体化的高性能制造特征。本项目依据核主泵泵轴耐磨抗疲劳性能要求,设计几何参数和材料特性,选择代表性的高功率脉冲磁控溅射(HiPIMS)和超音速火焰喷涂(HVOF)涂层方法分别制备Cr涂层和WC-Ni涂层,探索覆层加工工艺载荷的物质与能量输入条件,通过减控覆层加工工艺的几何、结构、物理、化学等多源耦合约束,构建主动协调的材料加工工艺载荷的应力场、温度场和化学位场等(多)场环境,相应的建立內稟的材料表面完整性变化关系,利用可控的表面完整性与核主泵泵轴性能的关联模型,揭示以表面完整性的形成机制、评价方法和调控作用为核心的核主泵泵轴覆层加工制造原理,获得泵轴加工制造所要求的耐磨抗疲劳性能,发展出适用于核主泵泵轴等重大装备关键零件功能性表面层制造技术。为提出高性能制造理论框架,以基于知识方法取代实验迭代的试错法,解决高性能制造反问题提供理论基础和技术支撑。
核主泵泵轴耐磨抗疲劳覆层具备材料、设计、制造一体化的高性能制造特征。本项目依据核主泵泵轴耐磨抗疲劳性能要求,设计几何参数和材料特性,选择代表性的高功率脉冲磁控溅射(HiPIMS)和超音速火焰喷涂(HVOF)涂层方法分别制备Cr涂层、Cu涂层、WC-Ni涂层等,探索了覆层加工工艺载荷的物质与能量输入条件,通过减控覆层加工工艺的几何、结构、物理、化学等多源耦合约束,构建了主动协调的材料加工工艺载荷的应力场、温度场和化学位场等(多)场环境,相应的建立內稟的材料残余应力、断裂韧性等表面完整性变化关系,利用可控的表面完整性与核主泵泵轴性能的关联模型,揭示了以表面完整性的形成机制、评价方法和调控作用为核心的核主泵泵轴覆层加工制造原理,获得泵轴加工制造所要求的耐磨抗疲劳性能,发展出适用于核主泵泵轴等重大装备关键零件功能性表面层制造技术。为提出高性能制造理论框架,以基于知识方法取代实验迭代的试错法,解决高性能制造反问题提供理论基础和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
五轴联动机床几何误差一次装卡测量方法
双吸离心泵压力脉动特性数值模拟及试验研究
基于混合优化方法的大口径主镜设计
人工智能技术在矿工不安全行为识别中的融合应用
核主泵叶轮多轴数控加工工艺规划与优化方法研究
混流式核主泵内部流动及其控制
核主泵动静叶栅内部非定常流动及其激励机制
核主泵动静叶栅匹配规律及瞬态干涉效应研究