High performance manufacture oriented nano surface engineering has been transformed from passive protection for traditional surface techniques to active design and manufacturing for advanced ones in the recent years. In this project, the optimized and adjusted technological conditions of chemical contents, species energy and density, and species trajectory during the deposition process from the sputtered species are used to characterize the energy input and dissipation for the high power pulsed magnetron sputtering technique as a typical developing example from nano coatings techniques. The Cu/Nb nano multilayer protective coatings with the proper contents, microstructure, and multiscale structure are precisely deposited on the hook switch, which serves on the movement of control rods in the nuclear reactor core of nuclear power plant. The relationship of the microstructure with the wear and corrosion resistance, anti-fatigue, and anti-irradiation properties is provided for the Cu/Nb nano multilayer protective coatings. Considering the common characteristics and typical process conditions for the nano surface techniques, the theoretical system of nano surface engineering is constructed based on the physical and chemical mechanism of the nano surface techniques. The microstructure and features depended on the energy conversation and displacement rule are explored to describe the materials response in microstructure and properties. The actively surface design and manufacturing meet the demands of extreme manufacturing for the key components for nuclear power plants when the theoretical system of nano surface engineering is establishing and completing.
面向高性能制造的纳米表面工程已从传统表面工程的被动防护向主动的表面设计和制造发展。本项目以国际上最新研发的一种纳米覆层核心技术——高功率脉冲磁控溅射(HiPIMS)沉积技术为范例,利用HiPIMS技术超高离化等离子体具有精准调控溅射物质的化学组成、能量、束流和运动轨迹的优势,在核电站反应堆芯磁力提升控制棒驱动机构——可动钩爪、连接杠杆和销钉表面形成均匀致密的耐磨、耐辐照Cu/Nb纳米多层防护覆层,量化纳米表面的外部能量输入和耗散过程,确定零件内部材料的响应机制和性能变化等技术特征,依据纳米表面技术的共性技术特征和典型工艺条件,提出和建立以物理学、化学为基础的纳米表面工程理论体系,探明纳米表面形成的能量、运动与微观组织和性能间的作用规律和调控机理,实现严格理论指导下的纳米表面主动设计和制造目标,满足高温、高压、高放射性和超长使役的极端制造技术需求,解决核电站长期运动零部件的设计和制造难题。
面向高性能制造的纳米表面工程已从传统表面工程的被动防护向主动的表面设计和制造发展。本项目以国际上最新研发的一种纳米覆层核心技术——高功率脉冲磁控溅射(HiPIMS)沉积技术为范例,利用HiPIMS技术超高离化等离子体具有精准调控溅射物质的化学组成、能量、束流和运动轨迹的优势,在核电站反应堆芯磁力提升控制棒驱动机构——可动钩爪、连接杠杆和销钉表面形成均匀致密的耐磨、耐辐照Cu/Nb纳米多层防护覆层,量化了纳米表面的外部能量输入和耗散过程,确定零件内部材料应力场等的响应机制和结合力、断裂韧性性能变化等技术特征,依据纳米表面技术的共性技术特征和典型工艺条件,提出和建立了以物理学、化学为基础的纳米表面工程理论体系,探明纳米表面形成的能量、运动与微观组织和性能间的作用规律和调控机理,实现严格理论指导下的纳米表面主动设计和制造目标,满足高温、高压、高放射性和超长使役的极端制造技术需求,解决核电站长期运动零部件的设计和制造难题。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
直接联网的海量存储系统组成原理与核心技术研究
表面工程化的智能纳米药物载体的构建和应用
NGI体系结构-SUPA及其核心技术研究
全国摩擦学与表面工程学术研究讨会“十一五”摩擦学与表面工程的