有界型量子超群胚上的Pontryagin对偶、Galois对象和张量范畴表示

基本信息
批准号:11371088
项目类别:面上项目
资助金额:62.00
负责人:王栓宏
学科分类:
依托单位:东南大学
批准年份:2013
结题年份:2017
起止时间:2014-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:周建华,潮小李,董井成,唐向东,王圣祥,张晓辉,王伟,赵晓凡,薛育祁
关键词:
有界型量子超群胚张量范畴Galois对象Pontryagin对偶
结项摘要

Given an algebra A with a non-degenerate product and with a coproduct on A from A to the multiplier algebra of the tensor product of A with itself. We will study the coproduct and the relation between the ranges and the kernels of the Galois maps by an idempotent multiplier in the multiplier algebra of the tensor product of A with itself and give the notion of an algebraic quantum groupoid. Then we will establish the theory of integrals and cointegrals in order to show the Pontryagin duality for these algebraic quantum groupoids. As an application of the duality, we obtain the Radfod's formula for the antipode of an algebraic quantum groupoid by using the Fourier transformation on A.Then we introduce a theory of Galois objects for algebraic quantum groupoids, i.e.,algebras equipped with a Galois coaction by an algebraic quantum groupoid and prove that there are two distinguished weak K.M.S. functions and there is an analogue of the antipode squared. Finally, we will discuss how to construct the new module categories attached to double Lie groupoids, exacts and Hopf cyclic cohomology, in particular, we will show that every cyclic operad with multiplication is a cocyclic module such that the homology of the associated cochain complex is a Batalin-Vilkovisky algebra and its negative cyclic cohomology is a graded Lie algebra of degree -2. Similarly, we will develop our results for an algebraic quantum groupoid to the setting of an algebraic quantum hypergroupoid and a bornological qLet A be an algebra with a non-degenerate product and let \D be a coproduct on A from A to M(A\o A), the multiplier of A\o A. We will study the coproduct \D and the relation between the ranges and the kernels of the Galois maps by an idempotent multiplier E in M(A\o A) and give the notion of an algebraic quantum groupoid. Then we will establish the theory of integrals and cointegrals in order to show the Pontryagin duality for these algebraic quantum groupoids. As an application of the duality, we obtain the Radfod's formula for the antipode of an algebraic quantum groupoid by using the Fourier transformation on A. Then we introduce a theory of Galois objects for algebraic quantum groupoids, i.e., algebras equipped with a Galois coaction by an algebraic quantum groupoid and prove that there are two distinguished weak K.M.S. functions and there is an analogue of the antipode squared. Finally, we will discuss how to construct the new module categories attached to double Lie groupoids, exacts and Hopf cyclic cohomology, in particular, we will show that every cyclic operad with multiplication is a cocyclic module such that the homology of the associated cochain complex is a Batalin-Vilkovisky algebra and its negative cyclic cohomology is a graded Lie algebra of degree -2. We will also develop our the results and Nichols algebras and Weyl groupoids in the setting of an algebraic quantum hypergroupoid and a bornological quantum groupoid.

给定一个非退化的幂等代数到自身张量积代数的乘子代数上的一个余乘和该乘子代数中的一个幂等元,通过研究余乘和张量积代数上Galois映射的值域与核之间的关系,来定义代数量子群胚,并用其源代数和靶代数来建立该代数量子群胚的余积分与积分理论,从而建立其上的Pontryagin对偶理论,进而利用傅里叶变换理论来证明Radford对极的四次方公式。其次,研究代数量子群胚所余作用的Galois对象的弱K.M.S.函数及对极平方的类似映射的存在性问题。 最后,讨论该代数量子群胚上的模范畴的构造以及Hopf循环上同调,主要通过双李群胚来构造张量范畴和模范畴的正合性,尤其,证明一个带有乘法的循环operad是余循环模,且它的上链复形的上同调是Batalin-Vilkovisky代数且其负循环上同调是一个阶为-2的分次李代数,同时将研究代数量子超群胚和有界型量子群胚上的Nichols代数与Weyl群胚。

项目摘要

众所周知,一个有限群上的函数代数是一个Hopf代数,而一个无限群上的带有有限支撑的函数代数是一个乘子Hopf代数; 群胚是群的自然推广,一个有限群胚上的函数代数是一个弱Hopf代数,而一个无限群胚上的带有有限支撑的函数代数是什么样代数?这是本项目主要研究的对象:弱乘子Hopf代数。给定一个非退化的幂等代数到自身张量积代数的乘子代数上的一个余乘和该乘子代数中的一个幂等元,通过研究余乘和张量积代数上Galois 映射的值域与核之间的关系,来定义代数量子群胚,并用其源代数和靶代数来建立该代数量子群胚的余积分与积分理论,从而建立其上的Pontryagin 对偶理论,进而利用傅里叶变换理论来证明Radford 对极的四次方公式。其次,研究代数量子群胚所余作用的Galois 对象的弱K.M.S.函数及对极平方的类似映射的存在性问题。 最后,讨论该代数量子群胚上的模范畴的构造以及Hopf 循环上同调,主要通过双李群胚来构造张量范畴和模范畴的正合性,尤其,证明一个带有乘法的循环operad 是余循环模,且它的上链复形的上同调是Batalin-Vilkovisky 代数且其负循环上同调是一个阶为-2 的分次李代数,这些将有利于研究代数量子超群胚和有界型量子群胚上的Nichols代数与Weyl 群胚。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
2

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020
3

资源型地区产业结构调整对水资源利用效率影响的实证分析—来自中国10个资源型省份的经验证据

资源型地区产业结构调整对水资源利用效率影响的实证分析—来自中国10个资源型省份的经验证据

DOI:10.12202/j.0476-0301.2020285
发表时间:2021
4

不同分子分型乳腺癌的多模态超声特征和临床病理对照研究

不同分子分型乳腺癌的多模态超声特征和临床病理对照研究

DOI:10.3760/cma.j.cn131148-20190926-00591
发表时间:2020
5

倒装SRAM 型FPGA 单粒子效应防护设计验证

倒装SRAM 型FPGA 单粒子效应防护设计验证

DOI:
发表时间:2016

王栓宏的其他基金

批准号:19601015
批准年份:1996
资助金额:4.50
项目类别:青年科学基金项目
批准号:10871042
批准年份:2008
资助金额:25.00
项目类别:面上项目
批准号:11871144
批准年份:2018
资助金额:53.00
项目类别:面上项目

相似国自然基金

1

乘子余群胚理论和代数量子群胚的双Galois理论及交叉Yetter-Drinfeld-模范畴

批准号:11871144
批准年份:2018
负责人:王栓宏
学科分类:A0106
资助金额:53.00
项目类别:面上项目
2

量子代数和张量范畴

批准号:11571199
批准年份:2015
负责人:黄华林
学科分类:A0105
资助金额:45.00
项目类别:面上项目
3

量子超群及相关超代数的表示理论

批准号:11571036
批准年份:2015
负责人:万金奎
学科分类:A0105
资助金额:45.00
项目类别:面上项目
4

导出范畴,稳定范畴和Koszul对偶

批准号:11471038
批准年份:2014
负责人:胡维
学科分类:A0104
资助金额:60.00
项目类别:面上项目