In order to find the high-frequency transfer characteristics of high-speed trains and solve their high-frequency vibration problem, three new models are developed based on high-speed wheel/rail interaction theory, sound transmission structure theory, railway vehicle/track coupling theory, experiments and numerical method. The three models are, respectively, the nonlinear high-speed wheel/rail excitation model at high frequencies in time domain, the model for the analysis on high frequency vibration energy transfer characteristics of the suspension systems, and rigid-flexible coupling model of the high-speed train/track in time domain. Using them analyzes the characteristics of high-speed wheel/rail excitation, reveals the mechanism of high-speed wheel/rail vibration at high frequencies, and clears the key influencing parameters of the structure. The investigation is carried out into the variation of dynamic stiffness and dynamic dumping of high-speed bogie suspension parameters with temperature, time and frequency. The present work also explores the mechanical equivalent model of high-frequency vibration energy transfer of the bogie suspension structure and the equivalent method of its mechanics. The flow, transfer and attenuation characteristic of the high-frequency vibration energy in the axle box-bogie frame - coach are analyzed in detail, and the key high-frequency vibration energy transfer components and sensitive structure parameters are found. These research results are the important scientific basis and reference for the design of high-speed train operation safety, and improving the performance of the high-speed train vibration and noise and the ride comfort.
为研究高速列车显著高频振动问题及其传递特性,基于高速轮轨关系、结构传声理论和车辆/轨道耦合动力学理论,结合试验测试和数值计算方法,建立了时域下高速轮轨非线性高频激振机理研究模型、转向架悬挂结构高频振动能量传递特性分析模型和高速列车/轨道刚柔耦合高频激振机理研究模型,研究高速轮轨高频激振特性,揭示高速轮轨高频振动产生机制,从结构和性能参数明确其关键影响参数。研究高速转向架悬挂系统关键部件动刚度和动阻尼的温变、频变和时变特性,探寻转向架悬挂结构高频振动能量传递特性力学等效方法与力学等效模型。研究高频振动能量在"轴箱-构架-车体"系统的流动、传递和衰减特性,确定一系和二系悬挂系统的高频振动能量显著传递路径及其量化排序,明确关键高频振动能量传递部件及其敏感参数,为保障高速列车运行安全性,改善高速列车车内振动和噪声性能,提高其乘坐舒适性,提供科学依据与参考。
轮轨激励是高速列车振动噪声的主要来源之一,掌握轮轨激励特征,了解轮轨显著高频振动通过轮轨、构架(悬挂系统)到车体的传递特性,是高速列车减振降噪亟待解决的重要学术和工程技术难题。鉴于此,本项目开展了以下主要研究工作:1)系统开展了高速列车振动噪声测试,掌握了高速列车显著高频的激励和传递特性,探明了高速轮轨激励的关键影响因素,解释了轮轨显著高频振动产生机制;2)建立了考虑旋转柔性轮轨的时域刚柔耦合车辆/轨道动力学分析模型,研究了旋转柔性轮对对高速列车显著高频振动特性的影响;3)在时域和频域分别建立了高速列车转向架高频振动传递特性分析模型,研究了高频振动能量在“轴箱-构架-车体”系统的流动、传递和衰减特性,确定一系和二系悬挂系统的高频振动能量显著传递路径及其量化排序,明确关键高频振动能量传递部件及其敏感参数;4)基于项目研究成果,以时速350公里“复兴号”高速动车组为研究对象,开展了低噪声正向设计,使车内外噪声达到国际标准,与现有动车组相比,车内噪声降低约3-5dBA。.项目执行期间,共发表学术论文54篇,其中SCI论文16篇,EI论文17篇。授权发明专利2项。培养毕业博士4人,硕士9人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
城市轨道交通车站火灾情况下客流疏散能力评价
高速列车高频激扰振动机理及传递规律研究
高速列车诱发环境振动传播特性的试验研究
高速列车-气流耦合振动研究
高速列车振动行为、振动失效和振动评价研究