We demonstrate the existence of ground state solutions in coupled discrete nonlinear Schrödinger equations (CDNLS) with periodic potentials. First, we consider two types of solutions to CDNLS periodic and vanishing at infinity. Calculus of variations and the Nehari manifolds are employed to establish the existence of the periodic solutions, and then, using periodic approximations, we present sufficient conditions on the existence of ground state solutions which are vanishing at infinity. Second, we show that each of the components of this ground state solutions are not zero. Third, extensive numerical examples in three dimensions for ground state solutions are presented to demonstrate the power of the numerical methods.
首先,利用 Nehari 流形结合周期逼近的方法讨论了耦合离散非线性薛定谔方程两类基态解的存在性,一类为周期基态解;一类为同宿基态解.其次,得到同宿基态解的各个分量均不为零. 最后,利用数值方法模拟耦合离散非线性薛定谔方程(具有三分量)的非平凡同宿基态解.
{{i.achievement_title}}
数据更新时间:2023-05-31
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选
复杂系统科学研究进展
基于MCPF算法的列车组合定位应用研究
带有滑动摩擦摆支座的500 kV变压器地震响应
非自共轭与自共轭离散系统的边值问题、周期解及同宿轨
几类非线性Hamilton系统周期解和多包同宿解的存在性与多重性研究
泛函微分方程周期解、同宿解及相关问题的研究
多体问题的周期解、中心构型及同宿轨